Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Identification of the Induction Machine Based On Genetic Algorithm and Simulated Annealing, Using Dspace 1104

Mohamed Moutchou(1*), Hassan Mahmoudi(2), Ahmed Abbou(3)

(1) Electric Engineering Department. Mohammadia School’s of Engineer, Mohamed V University Agdal, Rabat, Morocco, Morocco
(2) Electric Engineering Department. Mohammadia School’s of Engineer, Mohamed V University Agdal, Rabat, Morocco, Morocco
(3) Electric Engineering Department. Mohammadia School’s of Engineer, Mohamed V University Agdal, Rabat, Morocco, Morocco
(*) Corresponding author



In this paper we present a new technique of the induction machine identification based on an optimization by hybrid genetic algorithm, using the technique of simulated annealing to improve the identification algorithm characteristics in terms of convergence qualities. This algorithm has been validated by simulation and the obtained results demonstrate its power and efficiency. Thus we choose to use this algorithm for the induction machine experimental identification, using the Dspace 1104 platform, which gave good results.
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Genetic Algorithm; Simulated Annealing; Genetic Algorithm; Optimization; Identification; Induction Machine

Full Text:



E. Walter et L. Pronzato. Identification of Parametric Models from Experimental Data (Springer-Verlag, 1997).

M. Fliess, C. Join, H. Sira-Ramirez, Nonlinear estimation is easy, International Journal of Modelling, Identification and Control, vol. 4, n° 1, pp 12–27, 2008.

R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach (IEEE Press, New York, 2001).

M. Gautier et P. Poignet. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control Engin. Practice, tome 9, pages 1361–1372, 2001.

E. Laroche et M. Boutayeb, Identification of a class of nonlinear systems - analysis and robustness, «IFAC Symposium Nonlinear Control Systems», Stuttgart, Allemagne, 2004.

B. Bamieh and L. Giarre. Identification of linear parameter varying models. Int. Journal of Robust and Nonlinear Control, Vol. 12, pp. 841–853, 2002.

M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design (John Wiley & Sons, Inc., 1995).

A. Isidori, Nonlinear Control Systems, (Third Edition, Springer-Verlag London 1995).

Moutchou, M., Mahmoudi, H., Abbou, A., Sensorless sliding mode-backstepping control of the induction machine, using sliding mode-MRAS observer, (2013) International Review on Modelling and Simulations (IREMOS), 6 (2), pp. 387-395.

Moutchou, M., Abbou, A., Mahmoudi, H., Induction machine speed and flux control, using vector-sliding mode control, with rotor resistance adaptation, (2012) International Review of Automatic Control (IREACO), 5 (6), pp. 804-814.

S.J. Chapman, Electric machinery fundamentals (McGraw-Hill, 1991).

R. Krishnan, Electric motor drives – modelling, analysis and control (Prentice-Hall, 2001).

K.S. Huang, Q.H. Wu & D.R. Turner, Effective identification of induction motor parameters based on fewer measurements, IEEE Trans. On Energy Conversion, Vol. 17(Issue 1), pp. 55–60, 2002.

V. Horga, A. Onea, and M. Ratoi, Parameter Estimation of Induction Motor Based on Continuous Time Model, in Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 2006, pp. 513-518.

Y. Koubaa, Recursive identification of induction motor parameters, Simulation Modeling Practice and Theory, vol. 12, pp. 363–381, 2004.

P. Nangsue, P. Pillay, and S. E. Conry, Evolutionary Algorithm for Industrial Motor Parameter Determination, Energy Conversion, IEEE Transaction on, vol. 14-3, pp, 447-453, 1999.

F. Allonge, F. D´Ippolito, G. Ferrante, F. M. Raimondi, Parameter identification of induction motor model using genetic algorithms. IEE Proc. Control Theory, vol.145, pp.587-593, 1998.

P. Y. Chung, M. Doelen, R. D.Lorenz, Parameter identification for induction machines by continuous genetic algorithms. ANNIE Conf. St.Louis, pp.1-13, 2000.

Moutchou, M., Mahmoudi, H., Improved genetic algorithm identification of the squirrel-cage induction machine parameters, (2013) International Review on Modelling and Simulations (IREMOS), 6 (6), pp. 1891-1898.

J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press : Ann Arbor, 1975).

D. E Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning (Addison- Wesley, 1989).

Z. Michalewicz, Genetic Algorithm (Springer-Verlag : New York, 1992).

D. Beasley, D.R. Bull, R. Martin, An overview of genetic algorithms, Part 1: fundamentals, University Computing, Vol. 15, pp. 58-69, 1993.

L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold : New York, 1991).

A. Coello Coello, Carlos, D.A. Van Veldhuizen et G.B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems - Genetic and Evolutionary Computation (Springer 2007).

Wright A.H. Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, pp.205-218. 1991.

M. Marseguerra, E. Zio, L. Podollini Model Parameters Estimation and Sensitivity by Genetic Algorithms, Elsevier, Annals of Nuclear Energy 30, pp. 1437–1456, 2003.

S. Kirkpatrick, C.D. Gelatt, M.P. Veccbi, Optimisation by Simulated Annealing, Science, Vol. 220, No. 4598, pp. 671-680, 1983.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, & E. Teller, Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, pp. 1087-1092, 1953.

P.J. van Laarhoven,E.H. Aarts, Simulated Annealing: Theory and Applications (Springer, 1987).

R. Azencott, Simulated annealing: parallelization techniques (Wiley, 1992).

L. Ingber, Simulated Annealing: Practice versus theory, (Math. Comput. Modelling, 1993).

P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Springer, 1988).

R.A Rutenbar, Simulated annealing algorithms: an overview, Circuits and Devices Magazine, IEEE , Vol. 5, pp. 19-26, Jan. 1989.

K. Lee, M. El-Sharkawi, Fundamentals of Simulated Annealing, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, (Wiley-IEEE Press, 2008).

R. Heckman, Th. Lengauer, A simulated Annealing Approach to the Nesting Problem in the Textile Manufacturing Industry, In R. E. Burkard, P. L. Hammer, T. Ibakari and M. Queyranne, editors, Annals of Operations Research, Vol. 57, pp. 103-133, J. C. Baltzar AG science Publishers, Amsterdam, 1995.

N. Takahashi, K. Ehihara, Investigation of Simulated Annealing Method and Its Application to Optimal Design of Die Mold for Orientation of Magnetic Powder, IEEE Trans. Magn. Vol. 32, No. 3. pp.1996.

N. Gunduz, N. Akbulut, F.O. Sonmez, Generating optimal 2D structural designs using simulated annealing, in: S. Hernandez, C.A. Brebbia (Eds.), Computer Aided Optimum Design of Structures, vol. VII, pp. 347–356, WIT Press, 2001.

R.A. Marryott, D.E. Dougherty, and R.L. Stollar, Optimal Groundwater Management, Application of Simulated Annealing, Water Resources Research, 29(4), pp. 847-860, 1993.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2022 Praise Worthy Prize