Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Optimum Power Control Based DFIG Wind Energy Conversion System


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/iree.v9i1.118

Abstract


This paper proposes the modeling and control of Wind Energy Conversion System (WECS) based on the Double Fed Induction Generator (DFIG). In order to improve the effectiveness of the WECS, two independent control objectives can be stated. Therefore, a control is designed to capture a maximum energy at certain wind speed range and to regulate the stator reactive power, contributing to the compensation of the power factor according to grid requirements. A cascade control structure based on Fuzzy Logic Controller (FLC) has been applied to perform these two main objectives. The control algorithm tracks the maximum power for wind speeds at rated speed of wind turbines and ensures that the power will not go over the rated power for wind speeds over the rated value. Then, the Rotor Side Converter (RSC) is controlled to follow the optimal torque for a given maximum wind power, based on stator flux-oriented vector control. The control algorithm employs fuzzy logic controller to effectively achieve a smooth control of both stator active and reactive powers quantities under fault conditions. Some simulation results are presented to show the effectiveness of the WECS based on DFIG with the proposed control strategy.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Wind Turbine; DFIG; MPPT; Flux Orientation; Fuzzy Logic Controller

Full Text:

PDF


References


Whei-Min Lin, Chih-Ming Hong, Fu-Sheng Cheng, On-line designed hybrid controller with adaptive observer forvariable-speed wind generation system, Energy, vol. 35, 2010, pp. 3022- 3030.
http://dx.doi.org/10.1016/j.energy.2010.03.040

G. Tsourakisa, B. M.Nomikosb, C.D. Vournasa. Effect of wind parks with doubly fed asynchronous generators on small-signal stability, Electric Power Systems Research, vol. 79, 2009, pp. 190–200.
http://dx.doi.org/10.1016/j.epsr.2008.05.018

Zhanfeng Song, Changliang Xia , Tingna Shi, Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect, Applied Energy, vol. 87, 2010, pp. 3283–3293.
http://dx.doi.org/10.1016/j.apenergy.2010.04.009

José Luis Domínguez-García, Oriol Gomis-Bellmunt,Lluís Trilla-Romeroa, AdriàJunyent-Ferré, Indirect vector control of a squirrel cage induction generator wind turbine, Computers and Mathematics with Applications, vol. 64, 2012, pp. 102–114.
http://dx.doi.org/10.1016/j.camwa.2012.01.021

Manfred stiebler, Wind Energy Systems for Electric Power Generation (Springer, Verlag Berlin Heidelberg, 2008).
http://dx.doi.org/10.1007/978-3-540-68765-8_5

E. W. E. Association. Wind directions-the European wind industry magazine Feb. 2012; 31(1).

M. Boutoubat, L. Mokrani, M. Machmoum, Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement, Renewable Energy, vol. 50, 2013, pp. 378-386.
http://dx.doi.org/10.1016/j.renene.2012.06.058

Publishing O, Agency IE.World energy out look. Paris: Organisation for Economic Co-operation and Development; 2010.

Tazil M, Kumar V, Bansal RC, Kong S, Dong ZY, Freitas W, et al, Three-phase Doubly Fed Induction Generators: an overview. IET Journal on Electric Power Applications, vol. 4, 2010, pp. 75–89.
http://dx.doi.org/10.1049/iet-epa.2009.0071

Wang Z, Sun Y, Li G, Ooi BT, Magnitude and frequency control of grid-connected doubly fed induction generator based on synchronised model for Wind power generation, IET Journal on Renewable Power Generation, vol. 4, 2010, pp. 232–41.
http://dx.doi.org/10.1049/iet-rpg.2009.0088

Abdullah Asuhaimi B. Mohd Zin, Mahmoud Pesaran H. A, Azhar B. Khairuddin, Leila Jahanshaloo, Omid Shariati, An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation, Renewable and Sustainable Energy Reviews, vol. 27, 2013, pp.692–708.
http://dx.doi.org/10.1016/j.rser.2013.07.010

A. Gaillard, P. Poure, S. Saadate, M. Machmoum. Variable Speed DFIG Wind Energy System for Power Generation and Harmonic Current Mitigation, Renewable Energy, vol. 34, 2009, pp. 1545-1553.
http://dx.doi.org/10.1016/j.renene.2008.11.002

Adrià Junyent-Ferré, Oriol Gomis-Bellmunt, Andreas Sumper, Marc Sala, Montserrat Mata, Modeling and control of the doubly fed induction generator wind turbine, Simulation Modelling Practice and Theory, vol. 18, 2010, pp. 1365–1381.
http://dx.doi.org/10.1016/j.simpat.2010.05.018

Shuhui Li, Timothy A. Haskew, Jeff Jackson, Integrated power characteristic study of DFIG and its frequency converter in wind power generation, Renewable Energy, vol. 35, 2010, pp. 42–5,.
http://dx.doi.org/10.1016/j.renene.2009.07.016

Zhanfeng Song, Changliang Xia , Tingna Shi. Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect, Applied Energy, vol. 87, 2010, pp. 3283–3293.
http://dx.doi.org/10.1016/j.apenergy.2010.04.009

T.K.A. Brekken, N. Mohan, Control of a doubly fed induction wind generator under unbalanced grid voltage conditions, IEEE Trans. on Energy Conversion, vol. 22 n. 1, Mar 2007, pp 129–135.
http://dx.doi.org/10.1109/tec.2006.889550

F. Poitiers, T. Bouaouiche, M. Machmoum, Advanced control of a doubly-fed induction generator for wind energy conversion, Electric Power Systems Research, vol. 79, 2009, pp.1085–1096.
http://dx.doi.org/10.1016/j.epsr.2009.01.007

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. Syst Man Cybern, vol. 15 n. 1, 1985, pp.116–132.
http://dx.doi.org/10.1109/tsmc.1985.6313399

Zerikat, M., Chekroun, S., Mechernene, A., Development and implementation of high-performance variable structure tracking for induction motor using fuzzy-logic controller, (2010) International Review of Electrical Engineering (IREE), 5 (1), pp. 160-166.

V. Calderaro, V. Galdi, A. Piccolo, P. Siano, A fuzzy controller for maximum energy extraction from variable Speed wind power generation systems, Electric Power Systems Research, vol. 78, 2008, pp 1109–1118.
http://dx.doi.org/10.1016/j.epsr.2007.09.004

V. Galdi , A. Piccolo , P. Siano, Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi–Sugeno–Kang fuzzy model, Energy Conversion and Management, vol. 50 n. 2, 2009, pp. 413–421.
http://dx.doi.org/10.1016/j.enconman.2008.09.004

Kamel RM, Chaouachi A, Nagasaka K, Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement micro grid performance in islanding mode, Energy, vol. 35 n. 21, 2010, pp. 19-29.
http://dx.doi.org/10.1016/j.energy.2010.01.030

Vieira. J.P.A, Alves Nunes. Marcus Vinicius, Bezerra. U. H, Barra. W. Jr, New Fuzzy Control Strategies Applied to the DFIG Converter in Wind Generation Systems, Trans. America Latina, IEEE, vol. 5 n. 3, 2007, pp.
http://dx.doi.org/10.1109/tla.2007.4378497

E. Kamal, M. Koutb, A. A. Sobaih, and B. Abozalam, An intelligent maximum power extraction algorithm for hybrid wind-diesel-storage system, Int. J. Electr. Power Energy Syst, vol. 32 n. 3, 2010, pp. 170–177.
http://dx.doi.org/10.1016/j.ijepes.2009.07.005

E. Kamal, A. Aitouche, R. Ghorbani, and M. Bayart, Robust fuzzy fault tolerant control of wind energy conversion systems subject to sensor faults, IEEE Trans. Sustain. Energy, vol. 3 n. 2, 2012, pp.231–241.
http://dx.doi.org/10.1109/tste.2011.2178105

E. Kamal, M. Oueidat, A. Aitouch and R. Ghorbani, Robust Scheduler Fuzzy Controller of DFIG Wind Energy Systems, IEEE Trans. Sustain. Energy, vol. 4 n. 3, 2013.
http://dx.doi.org/10.1109/tste.2013.2242500

Kazemi MV, Moradi M, Kazemi RV. Minimization of powers ripple of direct power controlled DFIG by fuzzy controller and improved discrete space vector modulation, Electr Power Syst Res, vol. 89, 2012, pp. 23-30.
http://dx.doi.org/10.1016/j.epsr.2012.02.008

Ali M. Eltamaly, Hassan M. Farh, Maximum power extraction from wind energy system based on fuzzy logic control, Electric Power Systems Research, vol. 97, 2013, pp. 144– 150.
http://dx.doi.org/10.1016/j.epsr.2013.01.001

Wang, L, Truong, D.-N, Stability Enhancement of DFIG-Based Offshore Wind Farm Fed to a Multi-Machine System Using a STATCOM, IEEE Trans. on Power Sys, vol. 28 n. 3, 2013, pp. 2882 – 2889.
http://dx.doi.org/10.1109/tpwrs.2013.2248173

Wang. L, Truong. D.-N, Stability Enhancement of a Power System with a PMSG-Based and a DFIG-Based Off shore Wind Farm Using a SVC with an Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. on Power Sys, vol. 60 n. 7, 2013, pp. 2799 – 2807.
http://dx.doi.org/10.1109/tie.2012.2218557

R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. West Sussex, UK: Wiley-IEEE Press, 2011.
http://dx.doi.org/10.1002/9780470667057

S. Abdeddaim, A. Betka, Optimal tracking and robust power control of the DFIG wind turbine, Electrical Power and Energy Systems, vol. 49, 2013, pp. 234–242.
http://dx.doi.org/10.1016/j.ijepes.2012.12.014

Mohammad Pichan, Hasan Rastegar, Mohammad Monfared, Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems, Energy, vol. 51, 2013, pp. 154–162.
http://dx.doi.org/10.1016/j.energy.2012.12.047

Gupta, N., Singh, S.P., Dubey, S.P., Palwalia, D.K., Fuzzy logic controlled three-phase three-wired shunt active power filter for power quality improvement, (2011) International Review of Electrical Engineering (IREE), 6 (3), pp. 1118-1129.

Ghennam, T., Berkouk, E. M., Francois, B., A vector hysteresis current control applied on three-level inverter. Application to the active and reactive power control of doubly fed induction generator based wind turbine, (2007) International Review of Electrical Engineering (IREE), 2 (2), pp. 250-259.

Watanakul, N., An application of wind turbine generator on hybrid power conditioner to improve power quality, (2012) International Review of Electrical Engineering (IREE), 7 (5), pp. 5487-5495.

J.G. Slootweg, Reduced order modeling of wind turbines, Wind Power in Power Systems, (Wiley, 2005, pp. 555–585. S.).
http://dx.doi.org/10.1002/0470012684.ch25

Heier, Wind energy conversion systems (John Wiley & Sons Inc., New York, 1998).

Benoît Robyns, Bruno Francois, Philippe Degobert, Jean Paul Hautier, Vector control of induction machines (Springer-Verlag, London, 2012).
http://dx.doi.org/10.1007/978-0-85729-901-7

Fernando D. Bianchi, Hernán De Battista and Ricardo J. Mantz, Wind Turbine Control Systems (Advances in Industrial Control, Springer, London, 2007).
http://dx.doi.org/10.1007/1-84628-493-7

Krause PC. Analysis of electric machinery (McGraw Hill, NewYork, 1986).

E. H. Mamdani and S. Assilina, An experiment in linguistic synthesises with a fuzzy logic controller, International Journal of Man Machine Studies, n. 7, 1975, pp. 1-13.
http://dx.doi.org/10.1016/s0020-7373(75)80002-2

Gopal Sharma, K., Bhargava, A., Gajrani, K., Stability analysis of DFIG based wind turbines connected to electric grid, (2013) International Review on Modelling and Simulations (IREMOS), 6 (3), pp. 879-887.

Beltran, B., Benbouzid, M., Ahmed-Ali, T., Mangel, H., DFIG-based wind turbine robust control using high-order sliding modes and a high gain observer, (2011) International Review on Modelling and Simulations (IREMOS), 4 (3), pp. 1148-1155.

Eltamaly, A.M., Alolah, A.I., Abdel-Rahman, M.H., Improved simulation strategy for DFIG in wind energy applications, (2011) International Review on Modelling and Simulations (IREMOS), 4 (2), pp. 525-532.

Faida, H., Saadi, J., Modelling, control strategy of DFIG in a wind energy system and feasibility study of a wind farm in Morocco, (2010) International Review on Modelling and Simulations (IREMOS), 3 (6), pp. 1350-1362.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize