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Abstract – This paper presents an evaluation of the reliability index of power generation systems 
using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) 
to compare the results obtained from the basic method of probability. The reliability index used in 
this study is the Expected Energy Not Supplied (EENS) index, which is used in planning to 
increase the installed capacity for the adequate demand for electricity. The ANFIS and ANNs 
techniques will learn the relationship between the priority level, the installed capacity and the 
force outage rate (FOR) of the generator, which significantly affect the EENS index. The results 
indicated that the ANNs techniques have the best predictive performance. The best accuracy of the 
training data was 1.2488% and the testing data was 2.3963%, calculated using a Mean Absolute 
Percentage Error (MAPE). Furthermore, the ANNs took more time to learn faster than the ANFIS. 
Copyright © 2018 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
Currently, the development of industrial equipment or 

facilities requires electrical energy power sources. An 
electricity supply is therefore a basic part of an 
infrastructure and it is important to national 
development. Continued population growth and ongoing 
economic growth have increased the annually demands 
for electricity. Thus, electricity is very important in daily 
living and is fundamental in driving the economy. If 
there were insufficient power to supply the demand, this 
would have a severe effect on the Thai economy. To 
ensure the capacity of power plants used in production to 
be large enough to generate a sufficient amount of 
electricity, it is necessary to plan for reliable electrical 
systems in accordance with the specified criteria, then 
they should meet the increasing demand for electricity 
each year [1]-[27]. 

The reliability index used for evaluation is the 
Expected Energy Not Supplied (EENS), which is an 
index used for decision-making to increase the installed 
capacity of generators in response to the demand for 
electricity. In calculation by the probabilistic method, to 
find the Reliability Index, the Reliability Test System is 
used to compute the database [1]. The calculation is 
based on the probability principle of the reliability index 
calculation. For the ANFIS and ANNs applications [7], 
[13] the program calculates the correlation of the input 
and output variables by using a trial and an error method, 
which allows accurate and fast evaluation of the 
reliability index. 

This was used to make decisions about increasing the 
installed capacity to respond to the demand for 
electricity. 

Accurate and reliable evaluation are critical to the 
adequacy of electrical power, as they can determine the 
timing of future investments and operations in electricity 
generation. If the evaluation fails, this could affect the 
reliability and adequacy of the system. This may result in 
insufficient power to meet the needs of the consumer or 
in insufficient investment in building power plants. 

II. Generation Systems 
Most power generation planning is considered only for 

a single power system, which is used to study the 
adequacy of the power demand of the system and to 
determine its reliability. This is due to the failure status 
of the generator, which may result in the total system 
capacity being insufficient for the load requirements. In 
modeling, the specifics of the generator and the model of 
the demand for electricity [1] were considered.   

Generally, the operation of the electrical equipment, 
such as, generators, is characterized by a period of time 
between the available and unavailable states. 

 

 
 

Fig. 1. Conventional system model 
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The status of the work is not always due to failure or 
damage of the equipment, but after repairs have been 
completed, the operation can continue. The researchers 
can show the model of the generator using the two-state 
Markov model [1].  

 

 
 

Fig. 2. Two-state Markov model for generating system 
 
The basic generating unit parameter used in the 

capacity evaluation is the probability of finding the unit 
on a forced outage of time. This probability is defined in 
power systems as the unit unavailability. The unit force 
outage rate (FOR) is the ratio of the time value [1]: 
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Considering the model of the electrical equipment in 

the system to be a long-term agent, the Mean time to 
failure is "Up" and the Mean time to repair is "Down". 
For this reason, the behavior of the device is periodic. 

 

 
 

Fig. 3. Status of equipment in the electrical system 
 

Regarding the long-term capacity planning, it is 
important to know the estimated amount of the electricity 
demand and expected peak power. In this case, the 
researchers used the load duration curve, which changed 
from an hourly load curve. 

 

 
 

Fig. 4. Cumulative load duration curve (CLDC) 
 

The generation and load models were combined to set 
up the appropriate risk model [1]. 

 
 

Fig. 5. Generating capacity reliability evaluation 

III. Reliability Index 
Expected Energy Not Supplied (EENS) is an index 

that indicates the expected energy value of an 
uninterruptible power supply because the load is greater 
than the available capacity. The index represents the 
amount of unrepresented power generated by an 
inadequate capacity [1]: 
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Fig. 6. EENS index calculation 

IV. Adaptive Neuro-Fuzzy Inference 
System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System uses a 
hybrid learning algorithm from a two-way learning cycle. 
In the forward pass, parameters are adjusted using the 
Least Squares Estimate method while the Backward Pass 
uses the gradient method, the Gradient Descent for 
adjusting the parameters of a set [2], [21], [28]. 

IV.1. The Structure of Adaptive Neuro-Fuzzy  
Inference System (ANFIS) 

Layer 1 would transform input (x) into fuzzy values 
by calculating the value of the functions 1( )

iA x  and 

2( )
iB x , which may be an inverted bell function or 

another derivative function, such as, a triangular 
function. Trapezoid functions and the nodes in this layer 
would be rectangular, which would indicate that the 
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parameters could be adjusted. The parameters in this 
node would refer to the parameters of the membership 
function called Premise Parameters. 

 

 
 

Fig. 7. The structure of Adaptive Neuro-Fuzzy Inference System [13] 
 

Layer 2 would be responsible for multiplying the 
signals sent from the first layer together using the T-
norm Operator and exporting them to the third layer. The 
number of nodes in this layer would be equal to the 
number of fuzzy rules and signals. Export (w) would be 
the Firing Strength of each rule. The nodes in this class 
would be in a circular form, which would indicate that 
the parameters could not be adjusted. 

Layer 3 would adjust the Firing Strength to one rule 
by dividing Firing Strength by Firing Strength. From all 
rules, the result is called Normalized Firing Strength 
( )w . In this class, a circle would indicate that the 
parameter could not be adjusted. 

Layer 4 would be useful to calculate the result of the 
fuzzy rule. The nodes in this layer would be rectangular, 
indicating that the parameters of this node could be 
adjusted. These parameters are called Consequent 
Parameters.  

Layer 5 would serve as the aggregate of the signals 
from all four nodes together. Regarding the outgoing data 
(y), the nodes in this class would be in a circular form, 
which would indicate that the parameters could not be 
adjusted. 

IV.2. Membership Function 

Selecting a member’s function to choose the 
appropriate data coverage to be received [2] by being 
able to be overlapped for a smooth operation would have 
many member values, so the membership function would 
be changed to suit the purpose: 

 
Triangular MFs 

 

Trapezoidal MFs 

 
Smooth MFs 

 

Gaussian MFs 

Bell-shaped MFs 

 

Z MFs 

 

V. Artificial Neural Networks (ANNs) 
The neural network is a mathematical model that 

simulates the human brain in learning and memorizing 
by connecting, processing, and analyzing information. 
The result, called knowledge, is the outcome of the 
learning process. 

In general, neurons of the ANNs are simulated. When 
input data are sent, they could be multiplied by the 
weight, which would represent the importance of each 
input. The sum of the weighted values resulting from the 
input data multiplications and the weight values would 
be analyzed by the transfer function as a result of the 
output data. 

 

 
 

Fig. 8. Neuron network model [7] 
 

Various researchers have proposed a variety of ANNs 
structures or architecture for use in a variety of 
applications; such as, feed forward, feedback or 
recurrent, and competitive models. In order for the 
network to learn and show the desired behavior, learning 
would be divided into two types: Supervised Learning 
and Unsupervised Learning. In this article, the 
researchers focused on Supervised Learning, as it is used 
up to 80% of the time. 

Supervised neural network modeling is the process of 
learning. It requires input and output data to be used to 
learn and memorize relationships [12]. 

V.1. Multi-Layer Feed Forward Neural Networks 

1 input neuron model (Fig. 9). 
 

 
 

Fig. 9. Neuron with no bias and bias [7]  
 
Multi-input neuron model (Fig. 10). 
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Fig. 10. Single neuron with R inputs [7] 

V.2. Transfer Function [7] 

Typical transfer functions are illustrated below: 
 

Liner 

 

Log-Sigmoid 

 

Tan-Sigmoid 

 

V.3. The structure of Artificial Neural  
Networks (ANNs) 

When taking multiple neurons in parallel, they are 
made up of layers, and if each layer is serialized, it is a 
multilayer. When layered together, these are called 
multilayer feed-forward neural networks. The most 
popular structure is the multilayer neural network. This is 
a forward-feeding structure consisting of three layers: the 
input layer, the hidden layer, and the output layer. The 
hidden layer may have more than one layer [3]-[6]. 

Each layer consists of one or more nodes, and data are 
sent from the input side to the output side without being 
returned.  

The nodes in the same layer are not connected. As 
shown in Fig. 11, the researchers used the 
backpropagation technique [14]-[18], which is a way to 
adjust weight values connected between the nodes, based 
on the difference between the actual and desired results. 

 

 
 

Fig. 11. The structure of Artificial Neural Networks [12] 
 
The neural network consists of an input layer, a 

hidden layer (layer 1 and 2) and an output layer (layer 3). 

Each layer is connected by weight (w) and bias (b). a1, 
a2 and a3 are the outputs of the hidden layers 1 and 2 
and the output layers. f1, f2 and f3 are the transfer 
functions of the hidden layers 1 and 2 and the output 
layer [22]-[23]. 

The error e(i) when i = 1,2,3, ... s3 at the output layer 
is the difference in the output of a3(i) of the neural 
network and the value of t(i): 

 
 ( ) ( ) 3( ); 1,2,3, 3e i t i a i i s    (5) 

V.4. Algorithm 

Therefore, in learning, the training data and algorithm 
would need to be adjusted for two important parameters 
in the learning process: weight and bias. Furthermore, 
multilayer feed-forward neural networks would use the 
backpropagation algorithm [8]-[10]. 

The principle of backpropagation would be to adjust 
the weight and bias according to Equations (6)-(7), so 
that the error sum of squares (SSE) of Equation (8) 
would approach zero [12]: 
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The Levenberg-Marquardt algorithm (LMA) during 

the weight and bias training was adjusted by Equations 
(9)-(10): 
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During learning, µ would be multiplied by a constant; 
such as, 10 if the new SSE increased and divided by 10 if 
the new SSE decreased. 

If the norm of JT(w)∙e or JT(b)∙e was less than the 
minimum value set, or was greater than the maximum 
value set, the program would stop the training 
immediately: 
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V.5. Normalization Method 

The methodology was used to increase the accuracy of 
the ANNs output data and to reduce the learning time of 
the ANNs. The normalization input and output data sets 
must be made prior to the ANNs learning process, so that 
the value of the data would be based on the normal 
distribution. The mean is zero (μ =0) and the variance is 
one (σ =1). 

If each input or output side contains "n", the data set 
would be (X1, X2,…, Xn). Thus, the normalization data 
sets could be obtained using Equations (13)-(16), 
respectively [12]: 
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These should then be scaled or bundled into the 

transfer function using Equations (17)-(19) to enhance 
the efficiency of the ANNs after the learning process 
created the a linear distribution model with values 
between [0.1,0.9] for "n" and there would be a value 
between [-0.9,0.9] for the "n" set of the output data to be 
used for learning: 
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V.6. Unnormalization Method 

If the O matrix represents the normalization and 
scaling of the data set on the output side of each learning 
curve, then each ANNs output field could be realized by 
unscaling and unnormalization using Equations (20)-
(21), respectively [12]. 

The Q matrix represents the "n" data set of each ANNs 
derived data set that would be compared against each 
target data set. After the learning is completed, the 
weight and bias values would be stored: 
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VI. Test 
VI.1. Test procedures using Adaptive Neuro-Fuzzy 

Inference System(ANFIS) [13] 

Step 1: Bring the input and output data to 
normalization from Equations (13)-(19). 

Define 3 input variables: 
1) Priority level of the generator. 
2) Installed capacity of the generator. 
3) FOR of the generator. 
Define output 1 variable:  
1) EENS index of the generator. 
Step 2: Select data as training data and testing data. 

The priority level, installed capacity and FOR are input 
values and the EENS index is the output value. 

Step 3: Put the prepared data set into the M-file in the 
MATLAB. The train matrix is the training data and the 
test matrix is the testing data. Then click on the Run & 
Save button. The data set is saved to the workspace in the 
MATLAB and it is prepared for the run. 

Step 4: Use the “anfisedit” in the command window to 
run the ANFIS. 

Step 5: In the Load data field, select the workspace, 
then choose Load Data and type “train” into the input 
variable name field to bring the Train data into the 
ANFIS. 

Step 6: Select Load Data and type “test” into the input 
variable name field to bring the testing data into the 
ANFIS. 
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Fig. 12. Graph of training and testing input data 
 
Step 7: Select the Generate FIS box. Enter the number 

of MFs and choose the type of MFs. 
Step 8: Select the Train FIS box, enter the Epochs, 

then select Train Now to get the error value of the 
training. 

Step 9: Select Testing data and select Test Now to get 
the error value of the test. Then try to correct it until 
obtaining the acceptable error value. 

 

 

 
 

Fig. 13. Results of training & testing using ANFIS 
 
Step 10: When the acceptable error value is exported, 

export the file to the ANFIS learning process for the 
forecasting value by Export to the workspace. 

Step 11: Find the answer using “evalfis” on the 
command window. The program displays the output data. 

Step 12: Unnormalize and unscaling the output values 
for real values are derived using Equations (20)-(21). 

VI.2. Test procedures using Artificial  
Neural Networks (ANNs) [7] 

Step 1: Provide training and testing data. 
Define 3 input variables:  
1) Priority level of the generator. 
2) Installed capacity of the generator. 
3) FOR of the generator. 
Define output 1 variable:  
1) EENS index of the generator. 

 
 

Fig. 14. System structure of ANFIS (MFs 6 3 2) 
 

 
 

Fig. 15. Chart of Artificial neural networks (ANNs) 
 
Step 2: Bring the training and testing data to 

normalization from Equations (13)-(19). 
Step 3: Determine the number of neurons in the 

hidden layer, set the number of epochs (set to 100-500, 
but more configurable if the data is very complex) and 
modify the transfer function. 

Train NN 

Configure the input and output 
data, and then divide the data into 
two sets: training and testing data. 

Normalization and Scaling data 

- Determine the number of neurons in the 
hidden layer, starting with a small number.  
- Determine the number of epochs and 
modify the transfer function. 

Keep the final value 

Unnormalization and Unscaling output data 

Comparison between the output from the 
learning of the ANNs and actual output. 

Error→0 
Minimal error value 

Start 

End 

Yes 

No 

Calculate the MAPE 
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Step 4: Calculate by allowing the ANNs learn from 
the training data and use the test data in the ANNs 
learning test. 

Step 5: The output obtained from the ANNs is 
compared to the actual output in the form of error values. 

Step 6: Let the ANNs learn until they receive the 
smallest error value. 

Step 7: Unnormalize and unscaling using Equations 
(20)-(21) to find the optimal result. Perform the 
procedure shown in Fig. 16. 

 

 
 

Fig. 16. Results & error of the ANNs training program 

VII. Performance Measurement  
of ANFIS and ANNs 

The measurement of the accuracy of the ANFIS and 
ANNs used the Mean Absolute Percentage Error 
(MAPE) from the ANFIS and ANNs programs, which 
were compared with the reference output as follows [12]: 
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VIII. Results 
In Case 1, 32 units of the IEEE Reliability Test 

System (RTS) were used in the testing in which the 
installed capacity was 3405 MW and the peak load was 
2850 MW [11]. All the learning was done on the 
MATLAB program using the ANFIS / ANNs Toolbox to 
find the minimum error value. Case 1 compared the 
results between the ANFIS and the ANNs using the same 
set of data. For the RTS systems, there were 32 data sets: 
27 training data and five testing data. The input data were 
the priority level of the generator, installed capacity, and 
FOR. The output data were the EENS. 

Case 1: Learning using the ANFIS technique on the 
RTS system: When defining a system structure as 7 2 5 
using a linear membership function of the type "trimf", 
the ANFIS learning had the least error value. The MAPE 
of the training error was 2.2344% and the testing error 
was 3.9895%, as shown in Table I. For learning using the 
ANNs technique on the RTS system, when determining 
the number of neurons to 13 12 and the transfer function 
of the hidden layer 1, 2 and 3 was "tansig", "purelin" and 
"purelin", respectively, it was found that the learning of 
the ANNs would be the smallest error. The MAPE of the 
training error was 1.2488% and the testing error was 
2.3963%, as shown in Table II. When comparing the 
values between the ANFIS and ANNs, the ANNs showed 
results closer to the real values than the ANFIS, as 
displayed in Fig. 17. 

 
TABLE I 

TEST RESULTS USING THE ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM IN THE RTS SYSTEMS 

No. of MFs MFs Type %MAPE 

Train Test 
7 2 5 trimf     linear 2.2344 3.9895 

 
TABLE II 

TEST RESULTS USING THE ARTIFICIAL NEURAL NETWORKS IN THE 
RTS SYSTEMS 

No. of 
neurons 

Transfer function %MAPE 

Layer1 Layer2 Layer3 Train Test 
13 12 tansig purelin purelin 1.2488 2.3963 

 

 
 

Fig. 17. Comparision of the results between the ANFIS  
and ANNs in Case 1 

 
In Case 2 using Thai thermal power plant systems, 85 

units based on PDP 2015 were used in testing in which 
the installed capacity was 37,612 MW and the peak load 
was 30,218 MW [19]. All learning was done on the 
MATLAB program using the ANFIS / ANNs Toolbox to 
find the minimum error value. Case 2 compared the 
results between the ANFIS and ANNs using the same set 
of data. For Thai thermal power plant systems, there 
were 85 data sets: 70 new training data and 15 new 
testing data. The input data were the priority level of 
generator, installed capacity, and FOR. The output data 
were the EENS. 

Case 2: Learning using the ANFIS technique on the 
RTS system: When defining a system structure as 6 3 6 
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using a linear membership function of the type 
"gbellmf", ANFIS learning had the least error value. The 
MAPE of the training error was 2.1225% and the testing 
error was 4.0133%, as shown in Table III. For learning 
using the ANNs technique on the RTS system, when 
determining the number of neurons to 11 10 and the 
transfer function of the hidden layer 1, 2 and 3 was 
"tansig", "logsig" and "purelin", respectively, it was 
found that the learning of the ANNs would be the 
smallest error. The MAPE of the training error was 
2.4739% and the testing Error was 3.5219%, as shown in 
Table IV. When comparing the values between the 
ANFIS and ANNs, the ANNs showed results closer to 
the real values than the ANFIS, as displayed in Fig. 18. 

 
TABLE III 

TEST RESULTS USING THE ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM IN THE THAI THERMAL POWER PLANT SYSTEMS 

No. of MFs MFs Type %MAPE 

Train Test 
6 3 6 gbellmf     linear 2.1225 4.0133 

 
TABLE IV 

TEST RESULTS USING THE ARTIFICIAL NEURAL NETWORKS IN THE 
THAI THERMAL POWER PLANT SYSTEMS 

No. of 
neurons 

Transfer function %MAPE 

Layer1 Layer2 Layer3 Train Test 
11 10 tansig logsig purelin 2.4739 3.5219 

 

 
 

Fig. 18. Comparision of the results between the ANFIS 
and ANNs in Case 2 

IX. Conclusion 
The reliability evaluation of power generation using 

the Adaptive Neuro-Fuzzy Inference System (ANFIS) 
and Artificial Neural Networks (ANNs) was based on a 
comparison of the accuracy of the learning of each 
technique. The test found out that the average error was 
good and acceptable. However, the ANFIS would take 
more time to learn than the ANNs. Because of the more 
variable input and membership functions that would 
make the structure be more complex, the ANFIS would 
run slower or stop working, which was a limitation of the 
ANFIS that could not be solved. The ANNs technique 
was therefore found to be the most appropriate technique 
to use in evaluating the reliability of various test systems, 
as it took time to learn quickly and produced results that 

were closer to the actual values that were the most 
accurate. The ANNs could also be improved by adding 
the number of hidden layers to make learning more 
effective.  

As such, the preparation of the training and test data 
must be simulated from the program, which would take a 
long time, so it should be prepared faster. The test data 
must be different from the training data and must never 
be used for learning. The input variables used must be 
significant for the output variables because if they are too 
large, they will consume more time and memory and 
would not improve the performance. The preparation of 
the training data must be distributed consistently and 
sufficiently in quantity, so that they are of good quality, 
resulting in better performance and less time. Thus, these 
techniques could be used to plan long-term capacity 
expansion. 
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