Open Access Open Access  Restricted Access Subscription or Fee Access

A Dynamic Classification System to Study Climate Variation from Multi-Source Parameters – Case Study: Algeria Insolation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecos.v14i1.16393

Abstract


The study of climate variability strongly depends on data availability and reliability, because it is very difficult to have a homogeneous database in a large geographical region like Algeria. For some meteorological stations, the climatic data of some parameters (insolation, temperature, water vapor pressure, relative humidity and rainfall) are measured over several years, and sometimes with important data gaps. This work proposes a new dynamical approach in order to study climate variation from insolation parameter on spatial and temporal vectors in Algeria. It facilitates the localization of geographical zones with high climate variation potential through classification algorithms. A new model has been developed to manage data links from multi-source as well as to build locally a global climatic database.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Dynamic Classification; Linked-Data; Decision Making; Climate Variation; Solar Potential; Insolation Map; Algeria

Full Text:

PDF


References


Algerian ministry of energy and mines, http://www.energy.gov.dz/

E. Obayiuwana, O.E. Falowo, Network selection in heterogeneous wireless networks using multi-criteria decision-making algorithms: a review, Wireless Networks, Vol. 23, n. 8, pp. 2617-2649, 2017.
https://doi.org/10.1007/s11276-016-1301-4

R. Vardasca, L. Vaz, J. Mendes, Classification and Decision Making of Medical Infrared Thermal Images, Classification in BioApps, Lecture Notes in Computational Vision and Biomechanics, Vol. 26, pp. 79-104, 2018.
https://doi.org/10.1007/978-3-319-65981-7_4

E.A. Morgan, G.M. Di Giulio, Science and Evidence-Based Climate Change Policy: Collaborative Approaches to Improve the Science–Policy Interface, Communicating Climate Change Information for Decision-Making, pp. 13-28, 2018.
https://doi.org/10.1007/978-3-319-74669-2_2

C. Gervet, Computational Constraint Models for Decision Support and Holistic Solution Design, Communicating Climate Change Information for Decision-Making, pp. 65-76, 2018.
https://doi.org/10.1007/978-3-319-74669-2_5

R. Yousefpour, M. Hanewinkel, Climate Change and Decision-Making Under Uncertainty, Current Forestry Reports, Vol. 2, n. 2, pp. 143-149, 2016.
https://doi.org/10.1007/s40725-016-0035-y

K. Yamani, A. Hazzab, M. Sekkoum, T. Slimane, Mapping of vulnerability of flooded area in arid region. Case study: area of Ghardaïa-Algeria, Modeling Earth Systems and Environment, 2: 147, 2016.
https://doi.org/10.1007/s40808-016-0183-x

M. Lazri, S. Ameur, J.M. Brucker, M. Lahdir, M. Sehad, Analysis of drought areas in northern Algeria using Markov chains, Journal of Earth System Science, Vol. 14, n. 1, pp. 61-70, 2015.
https://doi.org/10.1007/s12040-014-0500-6

N. Chourghal, J.P. Lhomme, F. Huard, A. Aidaoui, Climate change in Algeria and its impact on durum wheat, Journal of Regional Environmental Change, Vol. 16, pp. 1623-1634, 2016.
https://doi.org/10.1007/s10113-015-0889-8

L. Zheng, Y. Qu, X. Qian, G. Cheng, A hierarchical co-clustering approach for entity exploration over Linked Data, Knowledge-Based Systems, Vol. 141, pp. 200-210, 2018.
https://doi.org/10.1016/j.knosys.2017.11.017

C. Bizer, T. Heath, T. Berners-Lee, Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems, Vol. 5, n. 3, pp. 1-22, 2009.
https://doi.org/10.4018/jswis.2009081901

M. Riga, P. Mitzias, E. Kontopoulos, I. Kompatsiaris, PROPheT – Ontology Population and Semantic Enrichment from Linked Data Sources, Data Analytics and Management in Data Intensive Domains. Communications in Computer and Information Science, Vol. 822, pp. 157–168, 2018.
https://doi.org/10.1007/978-3-319-96553-6_12

A. Hasnain, D. Rebholz-Schuhmann, Biomedical Semantic Resources for Drug Discovery Platforms, European Semantic Web Conference, Satellite Events. ESWC 2017. Lecture Notes in Computer Science, Vol. 10577, pp. 199-218, 2017.
https://doi.org/10.1007/978-3-319-70407-4_34

V. H.Queja, J. Almorox, J. A.Arnaldob, L. Saito, ANFIS SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment, Journal of Atmospheric and Solar–Terrestrial Physics, 155, pp. 62–70, 2017.
https://doi.org/10.1016/j.jastp.2017.02.002

N. Zemouri, H. Bouzgou, Ensemble of Support Vector Methods to Estimate Global Solar Radiation in Algeria, Artificial Intelligence in Renewable Energetic Systems, Vol. 35, pp. 155-163, 2018.
https://doi.org/10.1007/978-3-319-73192-6_16

R. Yacef, A. Mellit, S. Belaid, Z. Sen, New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaia, Algeria, Energy Conversion and Management, Vol. 79, pp. 606–615, 2014.
https://doi.org/10.1016/j.enconman.2013.12.057

S. Mehdizadeh, J. Behmanesh, K. Khalili, Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 146, pp. 215–227, 2016.
https://doi.org/10.1016/j.jastp.2016.06.006

F. Lantri, N.E.I. Bachari, H. Belbachir, Estimation and cartography of different corposants of solar radiation ground from meteorological data, Renewable and Sustainable Energy Reviews, Vol. 20, n. 1, pp. 111-130, 2017.

M. Mesri, A. Ghilane, N.E.I. Bachari, An approach to spatio-temporal analysis for climatic data, Renewable and Sustainable Energy Reviews, Vol. 16, n. 3, pp. 413 – 424, 2013.

N. Barbosa Roa, Classification dynamique pour le diagnostic de procédés en contexte évolutif, Ph.D. Thesis, Dept. Automatique. Paul Sabatier University - Toulouse III, France, 2016.

K. Bouchouicha, A. Razagui, N.E.I Bachari, N. Aoun, Mapping and geospatial analysis of solar resource in Algeria, International Journal of Energy, Environment, and Economics, Vol. 23, n. 6, pp. 735, 2015.

E. Rashedi, A. Mirzaei, M. Rahmati, An information theoretic approach to hierarchical clustering combination, Neurocomputing, Vol. 148, pp. 487-497, 2015.
https://doi.org/10.1016/j.neucom.2014.07.014

M. Hafner, S. Tagliapietra, L. de Strasser, Prospects for Renewable Energy in Africa, Energy in Africa, pp. 47-75, 2018.
https://doi.org/10.1007/978-3-319-92219-5_3

M.R. Yaiche, A. Bouhanik, S.M.A. Bekkouche, A. Malek, T. Benouaz, Revised solar maps of Algeria based on sunshine duration, Energy Conversion and Management, Vol. 82, pp. 114–123, 2014.
https://doi.org/10.1016/j.enconman.2014.02.063


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize