### Multiple-Population Genetic Algorithm for Solving Min-Max Optimization Problems

^{(*)}

*Corresponding author*

DOI: https://doi.org/10.15866/irecos.v10i1.4612

#### Abstract

A min-max optimization problem was originally designed for simultaneous maximization of the same object functions during the same optimization run. The existing approaches for solving min-max problem using genetic algorithms is mainly focused on maintaining a single-population of candidate tests. In this paper, we explore a new approach for using genetic algorithms (GAs) to solve min-max problems. The approach uses a two-population GA to find Maximum and Minimum goals of separate search processes using distinct island populations. The advantage of the suggested approach is that its ability to explore a greater variety of execution paths increases the search efficiency under certain conditions. By applying this to a collection of benchmarks problems, it has been shown experimentally that the proposed multiple-population algorithm out performs the single-population algorithm in terms of the number of executions, execution time, performance improvement, and efficiency. *Copyright © 2015 Praise Worthy Prize - All rights reserved.*

#### Keywords

#### Full Text:

PDF#### References

T. Mantere, A Min-Max Genetic Algorithm with Alternating Multiple Sorting for Solving Constrained Problems, http://www.stes.fi/ scai2006/proceedings/061-067.pdf, accessed August 2009.

P. E. Amiolemhen, and A. O. A. Ibhadode, Application Of Genetic Algorithms- Determination Of The Optimal Machining Parameters In The Conversion Of A Cylindrical Bar Stock Into A Continuous Finished Profile, International Journal of Machine tools & Manufacture, Vol. 44, n. 1, pp. 1403 – 1412, 2004.

http://dx.doi.org/10.1016/j.ijmachtools.2004.02.001

B. Baudry, F. Fleurey, J. M. Jezequel, and Y. L. Traaon, Automatic Test case Optimization: A Bacteriological Algorithm, Proceeding of 17 IEEE International Conferences on Automated Software Engineering, pp. 76-82, 2005.

http://dx.doi.org/10.1109/ms.2005.30

R. K., Sahoo, T. Banerjee, S. A. Ahmad, and A. Khanna, Improved Binary Parameters using GA for Multi-Component Aromatic Extraction: NRTL Model Without and With Closure Equations, Journal of Fluid Phase Equilibria Vol. 239, n. 5, pp.107–119, 2006

http://dx.doi.org/10.1016/j.fluid.2005.11.006

B. M.Kariuki, , H. S. González, R. L. Johnston, K. D. M. Harris, The Application of a Genetic Algorithm for Solving Crystal Structures from Powder Diffraction Data, Journal of Chemical Physics Letters, Vol. 280, pp. 189 – 195, 1997.

http://dx.doi.org/10.1016/s0009-2614(97)01156-1

Wikipedia,” MinMax problem”, http http://en.wikipedia.org/wiki/Minimax, accessed July2014.

M. Alshraideh., B. Mahafzah, E. Salman, H. S., Salah I, Using Genetic Algorithm as Test Data Generator for Stored PL/SQL Program Units, Journal of Software Engineering and Applications, Vol. 6, n. 2, pp. 65-73, 2013.

http://dx.doi.org/10.4236/jsea.2013.62011

M. Alshraideh, B. Mahafzah, S. Al-Sharaeh , A Multiple-Population Genetic Algorithm for Branch Coverage Test Data Generation, Software Quality Control, Vol. 19, n. 3, pp. 489-513, 2011,

http://dx.doi.org/10.1007/s11219-010-9117-4

M. Alshraideh , L. Bottaci, Using Program Data-State Diversity in Test Data Search, Proceedings of the Testing: Academic & Industrial Conference on Practice And Research Techniques, pp.107-114, 2006.

http://dx.doi.org/10.1109/taic-part.2006.37

J. Holland, Adaptation in Natural and ArtificialSystems. The MIT Press, Cambridge, MA, 1992.

T. P. Runarsson, Y. Stochastic, ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computation, Vol. 4, n. 3, pp.284-294, 2000.

http://dx.doi.org/10.1109/4235.873238

E. Mezure-montes, simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, Vol. 9: 1- 17, 2005.

http://dx.doi.org/10.1109/tevc.2004.836819

J. Morovic, Y. Wang, Influence of test image choiceon experimental results, In Proceedings of 11thColor Imaging Conference, Scottsdale, pp. 143-148, 2003.

M. Alshraideh, A Complete Automation of Unit Testing for JavaScript Programs, Journal of Computer Science, Vol. 4, n.12, pp. 1012--1019, 2008.

http://dx.doi.org/10.3844/jcssp.2008.1012.1019

J.W. Bandler, C. Charalambous, Nonlinear Programming Using Minimax Techniques , Journal of Optimization Theory and Applications, Vol. 13, pp.607-619, 1974.

http://dx.doi.org/10.1007/bf00933620

C. Charalambous, A.R. Conn, An Efficient Method to Solve the Minimax Problem Directly, SIAM Journal on Numerical Analysis. Vol. 15, pp. 162-187, 1978.

http://dx.doi.org/10.1137/0715011

D.Z. Du, P.M. Pardalos, Minimax and Applications, Kluwer: Dordrecht, 1995.

http://dx.doi.org/10.1007/978-1-4613-3557-3

S. Zuhe, A. Neumaier, M.C. Eiermann, Solving Minimax Problems by Interval Methods, BIT Numerical Mathematics, Vol. 30, pp. 742-751, 1990.

http://dx.doi.org/10.1007/bf01933221

Maxima and Minima of Functions of Two Variables, “http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/min_max/min_max.html “, [on line 10/10/2014].

Mary Gladence, L., Ravi, T., Mining the change of customer behavior in fuzzy time-interval sequential patterns with aid of Similarity Computation Index (SCI) and Genetic Algorithm (GA), (2013) International Review on Computers and Software (IRECOS), 8 (11), pp. 2552-2561.

Moustafa, A.A., Alqadi, Z.A., Alduari, M., Alomar, S., Practical approach to genetic algorithm cryptanalysis, (2009) International Review on Computers and Software (IRECOS), 4 (6), pp. 658-663.

Kunaraj, K., Seshasayanan, R., Constrained Cartesian Genetic Programming - A New Paradigm for Evolving Imprecise Multipliers, (2014) International Journal on Numerical and Analytical Methods in Engineering (IRENA), 2(1), pp. 5-8.

Abdelhakem-Koridak, L., Rahli, M., Benayed, F., Genetic Optimization for Combined Heat and Power Dispatch, (2014) International Journal on Engineering Applications (IREA), 2(5), pp. 163-168.

Abdul Jaleel, J., Rekhasree, R.L., A comparative study on AGC of power systems using reinforcement learning and genetic algorithm, (2013) International Review of Automatic Control (IREACO), 6 (4), pp. 404-409.

Hypiusova, M., Kajan, S., Robust controller design using edge theorem and genetic algorithm, (2013) International Review of Automatic Control (IREACO), 6 (2), pp. 194-200.

Tarim, N., İyibakanlar, G., Beamforming the Antenna Arrays in the Localizer Unit of Instrument Landing System by Using Genetic Algorithm, (2013) International Review of Aerospace Engineering (IREASE), 6(3), pp. 179-186.

Omar, H.M., Developing geno-fuzzy controller for satellite stabilization with gravity gradient, (2014) International Review of Aerospace Engineering (IREASE), 7 (1), pp. 8-16.

Bouslama-Bouabdallah, S., Tagina, M., A fault detection and isolation fuzzy system optimized by genetic algorithms and simulated annealing, (2010) International Review on Modelling and Simulations (IREMOS), 3 (2), pp. 212-219.

Rezaie Estabragh, M., Mohammadian, M., Rashidinejad, M., An application of elitist-based genetic algorithm for SVC placement considering voltage stability, (2010) International Review on Modelling and Simulations (IREMOS), 3 (5), pp. 938-947.

### Refbacks

- There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com**Copyright © 2005-2024**** Praise Worthy Prize**