Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Analysis of Magnetic Nanoparticle Biosensor with DNA and Protein Biomarkers

(*) Corresponding author

Authors' affiliations



Recent developments in the field of nanotechnology have enabled the invention of nano biosensors that aid in early detection of cancer. With large number of diseases affecting human beings it is mandatory to choose suitable biomarker for disease detection. In this paper, a summary of various biomaterials and sensing technology is discussed. The biosensors that can detect cancers have been summarized with their detection principle. Magnetic nano materials as sensing materials with DNA and protein biomarkers are analyzed for their performances based on the simulation settings in biosensor lab from Modeling of magnetic nanoparticles and their performances have been evaluated and discussed
Copyright © 2022 Praise Worthy Prize - All rights reserved.


Analyte Concentration; Biological Parameters; Device Parameters; Receptor Density Concentration; Settling Time

Full Text:



David W.G. Morrison, Mehmet R. Dokmeci, Utkan Demirci, and Ali Khademhosseini Chapter 17, Clinical Applications of Micro- and Nanoscale Bisensors.

R.Bashir, Introduction to BioMEMS & Bionano technology, Lecture 1,

Vipeesh P and NJR Muniraj, Review on Biosensor for Disease Detection, International Journal of Advanced Scientific Research and Technology, Issue 2 vol 3 June 2012 issi 2249-9954.

The Role of Thin Films in Blood Glucose and BioSensors, Materion Microelectronics & Services.

E-study Guide for: Organic Chemistry by Janice Gorzynski Smith.

Ashok Kumar, Biosensors Based on Piezoelectric Crystal Detectors: Theory and Application, The following article appears as part of JOM-e, 52 (10) (2000).

P. Nair, J. Go, and M. Alam, BioSensorLab, Purdue University, West Lafayette.

Emily Mastronardi, Amanda Foster, Xueru Zhang, and Maria C. DeRosa, Smart Materials Based on DNA Aptamers: Taking Aptasensing to the Next Level, Sensors (Basel). Feb 2014; 14(2): 3156-3171. Published online Feb 18, 2014.

Su X., Kanjanawarut R. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection. ACS Nano. 2009;3:2751-2759. [PubMed].

Medly C., Smith J., Tang Z., Wu Y., Bamrungsap W., Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008;80:1067-1072. [PubMed]

Chen Z., Luo S., Liu C., Cai Q. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal. Bioanal. Chem. 2009;395:489-494.[PubMed].

Pacini F., Pinchera A. Serum and tissue thyroglobulin measurement: clinical applications in thyroid disease. Biochimie. 1999;81:463-467. [PubMed].

Rossella E. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metabol. 2008;22:941-953. [PubMed].

Podsiadlo P., Sinani V., Bahng J., Kam N., Lee J., Kotov N. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir.2008;24:568-574. [PubMed].

Huang X., Qian W., El-Sayed I., El-Sayed M. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Laser. Surg. Med. 2007;39:747-753. [PubMed].

Huang X., Jain P., El-Sayed I., El-Sayed M. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser. Med. Sci. 2008;23:217-228. [PubMed].

Moran C., Wainerdi S., Cherukuri T., Kittrell C., Wiley B., Nicholas N., Curley S., Kanzius J., Cherukuri P. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2009;2:400-405.

Young-Eun Choi, Ju-Won Kwak and Joon Won Park , Review on Nanotechnology for Early Cancer Detection, Sensors 2010, 10, 428-455.

Xiong Liu , Qiu Dai , Lauren Austin , Janelle Coutts, Genevieve Knowles , Jianhua Zou , Hui Chen and Qun Huo, A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering, J. Am. Chem. Soc., 2008, 130 (9), pp 2780-2782.

Yong KT, Wang Y, Roy I, Rui H, Swihart MT, Law WC, Kwak SK, Ye L, Liu J, Mahajan SD, Reynolds JL. Preparation of Quantum Dot/Drug Nanoparticle Formulations for Traceable Targeted Delivery and Therapy. Theranostics 2012; 2(7):681-694.

H. Y. Tsai, B. Z. Gao, S. F. Yang, C. S. Li and C. Bor Fuh, Detection of alpha-fetoprotein in magnetic immunoassay of thin channels using biofunctional nanoparticles, Journal of Nanoparticle Research, December 2013, 16:2182.

Jokerst J V, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, Wong J, Gage C, Furmaga WB, Redding S W and McDevitt J T, Nano-biochips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels, Biosens Bioelectron. 2009 Aug 15;24(12):3622-9.

Christopher Ali Merchant, Single-walled Carbon Nanotubes for Spintronic and Photovoltaic Applications, ProQuest, 2009.

Chen R., Choi H., Bangsaruntip S., Yenilmez E., Tang X., Wang Q., Chang Y., Dai H. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc.2004;126:1563-1568. ]

Curreli M., Li C., Sun Y., Lei B., Gundersen M.A., Thompson M.E., Zhou C. Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 2005;127:6922-6923.

Roberts M.A., Kelley S.O. Ultrasensitive detection of enzymatic activity with nanowires electrodes. J. Am. Chem. Soc. 2007;129:11356-11357.

Shi L., Yu C., Zhou J. Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems. J. Phys. Chem. B. 2005;109:22102-22111.

Laocharoensuk R., Bulbarello A., Hocevar S.B., Mannino S., Ogorevc B., Wang J. On-demand protection of electrochemical sensors based on adaptive nanowires. J. Am. Chem. Soc. 2007;129:7774-7775.

Lee E.P., Peng Z., Cate D.M., Yang H., Campbell C.T., Xia Y. Growing Pt nanowires as a densely packed array on metal gauze. J. Am. Chem. Soc.2007;129:10634-10635.

Zhu N., Chang Z., He P., Fang Y. Electrochemically fabricated polyaniline nanowires-modified electrode for voltammetric detection of DNA hybridization. Electrochim. Acta. 2006;51:3758-3762.

Tian Y., Wang J., Wang Z., Wang S. Electroreduction of nitrite at an electrode modified with polypyrrole nanowires. Synthetic Metals.2004;143:309-313.

Hultgren A., Tanase M., Felton E.J., Bhadriraju K., Salem A.K., Chen C.S., Reich D.H. Optimization of yield in magnetic cell separations using nickel nanowires of different lengths. Biotechnol. Prog. 2005;21:509-515.

Jeong-O Lee, C Park1, Ju-Jin Kim, Jinhee Kim, Jong Wan Park and Kyung-Hwa Yoo, Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method, Journal of Physics D: Applied Physics Volume 33 Number 16.

Jijun Zhao, Buia Calin, Jie Han and , Jian Ping Lu, Quantum transport properties of ultrathin silver nanowires, arXiv:cond-mat/0209535 [cond-mat.mtrl-sci].

Peng, G.; Tisch, U.; Haick, H. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett. 2009, 9, 1362-1368.

Hahm, J.; Lieber, C. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51-54.

Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017-14022.

Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.; Lieber, C. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.

Li C. et al, "Complementary Detection of Prostrate Specific Antigen using In2O3 Nanowires and Carbon Nanotubes, J Am. Chem Soc 127(2005) 12484-12485.

Cusma A., Curulli A, Zane D., Kaciulis S, Padeletti G,. Feasibility of enzyme Biosensors based on Gold Nanowires, Mat. Sci. Eng. C27(2007) 1158-1161.

Basu M1, Seggerson S, Henshaw J, Jiang J, del A Cordona R, Lefave C, Boyle PJ, Miller A, Pugia M, Basu S, Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA), Glycoconj J. 2004; 21(8-9):487-96.

Yi Fan, Xiantong Chen , Alastair D. Trigg , Chih-hang Tung , Jinming Kong, and Zhiqiang Gao, Detection of MicroRNAs Using Target-Guided Formation of Conducting, J. Am. Chem. Soc., 2007, 129 (17), pp 5437-5443.

Rout C.S., Krishna S.H., Vivekchand S.R.C., Govindaraj A., Rao C.N.R. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes.Chem. Phys. Lett. 2005;418:582-586.

Pradeep R. Nair and Muhammad A. Alam, Theoretical detection limits of magnetic biobarcode sensors and the phase space of nanobiosensing, Analyst, 2010, 135, 2798-2801 | 2799.

K.-S. Park, J. Tae, B. Choi et al., "Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells," Nanomedicine, vol. 6, no. 2, pp. 263-276, 2010.

J. M. Hill, A. J. Dick, V. K. Raman et al., "Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells," Circulation, vol. 108, no. 8, pp. 1009-1014, 2003.

M. Getzlaff, Fundamentals of Magnetism, Springer, New York, NY, USA, 2008.

Peter Reimann, Andreas Schütze, Sensor Arrays, Virtual Multisensors, Data Fusion, and Gas Sensor Data Evaluation, Springer Series on Chemical Sensors and Biosensors 2013.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize