Open Access Open Access  Restricted Access Subscription or Fee Access

Concentrated Photovoltaic Thermal System (CPVT): Dust Effect and Solution for Enhancing Efficiency in Photovoltaic Technology


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v11i6.24463

Abstract


Photovoltaic technology is considered one of the fastest-growing solar technologies. Non-concentrated photovoltaic, especially crystalline silicon is widely used around the world. However, non-concentrated photovoltaic has limited efficiency and declines when cell temperature rises. Furthermore, using a substantial number of cells can be very expensive. Therefore, a Concentrating Photovoltaic Thermal (CPVT) system can be a key solution to overcome these challenges. This study presents basic information related to the CPVT system and its types. Additionally, it provides a mini review based on recent publications about the CPVT system and its applications. The results of this study indicate that the use of Fresnel collectors (Fresnel lens and linear Fresnel reflectors) to concentrate sunlight is highly preferred, and multi-junction PV cells could be an excellent option for a CPV system. Typical overall, electrical, and thermal efficiencies could have an average of 65%, 18%, and 50%, respectively.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Solar Energy; Photovoltaic Technology; Concentrated Photovoltaic; Concentrated Photovoltaic Thermal

Full Text:

PDF


References


Ahmed, M., Al-Khashman, O., Zakaria, A., The Optimal Use of Renewable Energy in Residential Buildings Under Jordanian Building Regulation: a Case Study, (2021) International Journal on Energy Conversion (IRECON), 9 (6), pp. 283-291.
https://doi.org/10.15866/irecon.v9i6.21413

Al-Rawashdeh, H., Al-Hwaiti, M., Yaseen, A., Behiri, M., Influence of Partial Replacement of Cement by Various Percentage of Scoria in Self-Compacting Concrete on Thermal Conductivity in the Jordan Building Construction for Energy Saving, (2021) International Review of Mechanical Engineering (IREME), 15 (7), pp. 385-393.
https://doi.org/10.15866/ireme.v15i7.20929

Mohamed R. Gomaa, Mohsen Ahmed, Hegazy Rezk. Temperature distribution modelling of PV and cooling water PV/T collectors through thin and thick cooling cross-fined channel box. Energy Reports 8 (2022), 1144-1153.
https://doi.org/10.1016/j.egyr.2021.11.061

Hani Al-Rawashdeh, Ahmad O. Hasan, Hazem A. Al-Shakhanbeh, Mujahed Al-Dhaifallah, Mohamed R. Gomaa, and Hegazy Rezk. Investigation of the Effect of Solar Ventilation on the Cabin Temperature of Vehicles Parked under the Sun. Sustainability 2021, 13(24), 13963.
https://doi.org/10.3390/su132413963

Mohamed R. Gomaa, Waleed Hammad, Mujahed Al-Dhaifallah, Hegazy Rezk. Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Solar Energy 2020, 211, 1110-1127.
https://doi.org/10.1016/j.solener.2020.10.062

Mohammad Shalby, Ahmad Abuseif, Mohamed R. Gomaa, Ahmad Salah, Abdullah Marashli, Hani Al-Rawashdeh. Assessment of Dust Properties in Ma'an Wind Farms in Southern Jordan. Jordan Journal of Mechanical and Industrial Engineering 16 (4), 2022, 645- 652.

Shalby, M., Salah, A. A., Matarneh, G. A., Marashli, A., & Gomaa, M. R. (2023). An investigation of a 3D printed micro-wind turbine for residential power production. International Journal of Renewable Energy Development, 12(3), 550-559.
https://doi.org/10.14710/ijred.2023.52615

Shalby, M.; Gomaa, M.R.; Salah, A.; Marashli, A.; Yusaf, T.; Laimon, M. Impact of the Air Filtration in the Nacelle on the Wind Turbine Performance. Energies 2023, 16, x.
https://doi.org/10.3390/en16093715

Ala'a K. Al-Bawwat, Francisco Jurado, Mohamed R. Gomaa, Antonio Cano. Availability and the possibility of employing wastes and bio-mass materials energy in Jordan. Sustainability 2023, 15, 5879.
https://doi.org/10.3390/su15075879

Ala'a K. Al-Bawwat, Antonio Cano, Mohamed R. Gomaa, Francisco Jurado. Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes 2023, 11(4), 992.
https://doi.org/10.3390/pr11040992

Mohamed R. Gomaa, Nesrien Al-Dmour, Hani A. AL-Rawashdeh, Mohammad Shalby. Theoretical model of a fluidized bed solar reactor design with the aid of MCRT method and synthesis gas production. Renewable Energy 148 (2020) 91-102.
https://doi.org/10.1016/j.renene.2019.12.010

Mohamed R. Gomaa, Ala'a K. Al-Bawwat, Mujahed Al-Dhaifallah, Hegazy Rezk, Mohsen Ahmed. Optimal design and economic analysis of a hybrid renewable energy system for powering and desalinating seawater. Energy Reports 9 (2023), 2473-2493.
https://doi.org/10.1016/j.egyr.2023.01.087

Hani Al-Rawashdeh, Omar Ali Al-Khashman, Laith M. Arrfou, Mohamed R. Gomaa, Hegazy Rezk, Mohammad Shalby, Jehad T. Al Bdour, and Mohamed Louzazni. Different Scenarios for Reducing Carbon Emissions, Optimal Sizing, and Design of a Stand-Alone Hybrid Renewable Energy System for Irrigation Purposes. International Journal of Energy Research 2023, 6338448.
https://doi.org/10.1155/2023/6338448

Al-Rawashdeh, H., Al-Khashman, O., A., Al Bdour, J. T., Gomaa, M.R., Rezk, H., Marashli, A., Arrfou, L. M. Louzazni, M. Performance Analysis of a Hybrid Renewable Energy System for Green Buildings to Improve Efficiency and Reduce GHG Emissions with multiple scenarios. Sustainability 2023, 15, 7529.
https://doi.org/10.3390/su15097529

Sharma, M. K., & Bhattacharya, J. (2021). Deciding between concentrated and non-concentrated photovoltaic systems via direct comparison of experiment with opto-thermal computation. Renewable Energy, 178, 1084-1096.
https://doi.org/10.1016/j.renene.2021.06.128

Sarwar, J., Shad, M., Khan, H., & Tayyab, M. (2022). A novel configuration of a dual concentrated photovoltaic system: Thermal, optical, and electrical performance analysis. Thermal Science.
https://doi.org/10.2298/TSCI220917209S

Alayi, R., Kasaeian, A. & Atabi, F. (2019). Optical modeling and optimization of parabolic trough Concertation Photovoltaic Thermal system. Environmental Progress & Sustainable Energy, 39(2).
https://doi.org/10.1002/ep.13220

Mohamed R. Gomaa, Mujahed Al-Dhaifallah, Ali Alahmer, Hegazy Rezk. Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System. Sustainability 2020, 12(13), 5392.
https://doi.org/10.3390/su12135392

Wang, G., Wang, F., Shen, F., Jiang, T., Chen, Z., & Hu, P. (2020). Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renewable Energy, 146, 2351-2361.
https://doi.org/10.1016/j.renene.2019.08.090

Papis-Frączek, K., & Sornek, K. (2022). A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling. Energies.
https://doi.org/10.3390/en15176123

Gakkhar, N., Soni, M. K., & Jakhar, S. (2020). Experimental and theoretical analysis of hybrid concentrated photovoltaic/thermal system using parabolic trough collector. Applied Thermal Engineering, 171.
https://doi.org/10.1016/j.applthermaleng.2020.115069

Al-Hrari, M., Ceylan, İ., Nakoa, K., & Ergün, A. (2020). Concentrated photovoltaic and thermal system application for freshwater production. Applied Thermal Engineering, 171.
https://doi.org/10.1016/j.applthermaleng.2020.115054

Sarwar, J., Shad, M. R., Hasnain, A., Ali, F., Kakosimos, K. E., & Ghosh, A. (2021). Performance analysis and comparison of a concentrated photovoltaic system with different phase change materials. Energies, 14(10).
https://doi.org/10.3390/en14102911

Manikandan, S., Selvam, C., Poddar, N., Pranjyal, K., Lamba, R., & Kaushik, S. C. (2019). Thermal management of low concentrated photovoltaic module with phase change material. Journal of Cleaner Production, 219, 359-367.
https://doi.org/10.1016/j.jclepro.2019.02.086

George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S., & Saidur, R. (2019, April 15). Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications. Energy Conversion and Management. Elsevier Ltd.
https://doi.org/10.1016/j.enconman.2019.02.052

Ju, X., Xu, C., Han, X., Du, X., Wei, G., & Yang, Y. (2017, February 1). A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Applied Energy. Elsevier Ltd.
https://doi.org/10.1016/j.apenergy.2016.11.087

Otanicar, T. P., Theisen, S., Norman, T., Tyagi, H., & Taylor, R. A. (2015). Envisioning advanced solar electricity generation: Parametric studies of CPV/T systems with spectral filtering and high temperature PV. Applied Energy, 140, 224-233.
https://doi.org/10.1016/j.apenergy.2014.11.073

Gomaa, M. R., Mustafa, R. J., & Rezk, H. (2019). An experimental implementation and testing of a concentrated hybrid photovoltaic/thermal system with monocrystalline solar cells using linear Fresnel reflected mirrors. International Journal of Energy Research, 43(14), 8660-8673.
https://doi.org/10.1002/er.4862

Alam, S., & Yelamanchili, R. (2018). Thermal modeling of concentrated photovoltaic thermal system at different operating conditions. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) (Vol. 6B-2018). American Society of Mechanical Engineers (ASME).
https://doi.org/10.1115/IMECE2018-86899

Boudjabi, A. F., Abada, D., Benbghila, N. E. H., & Ghoul, R. (2017). Experimental study of a "hybridized" photovoltaic panel. In Energy Procedia (Vol. 115, pp. 290-297). Elsevier Ltd.
https://doi.org/10.1016/j.egypro.2017.05.026

Alayi, R., Kasaeian, A., & Atabi, F. (2019). Thermal analysis of parabolic trough concentration photovoltaic/thermal system for using in buildings. Environmental Progress and Sustainable Energy, 38(6).
https://doi.org/10.1002/ep.13220

Yazdanifard, F., Ameri, M., & Taylor, R. A. (2020). Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Conversion and Management, 215.
https://doi.org/10.1016/j.enconman.2020.112927

Baqi, S.A., Hassan, A., Shah, A.H. (2020). Performance Optimization of Concentrated Photovoltaic-Thermal (CPV-T) System Employing Phase Change Material (PCM) in Hot Climate. In: Sayigh, A. (eds) Renewable Energy and Sustainable Buildings. Innovative Renewable Energy. Springer, Cham.
https://doi.org/10.1007/978-3-030-18488-9_46

Hosseini, S. E., & Butler, B. (2021). Design and analysis of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production. Journal of Thermal Analysis and Calorimetry, 144(3), 763-778.
https://doi.org/10.1007/s10973-020-09556-4

Bamisile, O., Huang, Q., Dagbasi, M., Adebayo, V., Okonkwo, E. C., Ayambire, P., … Ratlamwala, T. A. H. (2020). Thermo-environ study of a concentrated photovoltaic thermal system integrated with Kalina cycle for multigeneration and hydrogen production. International Journal of Hydrogen Energy, 45(51), 26716-26732.
https://doi.org/10.1016/j.ijhydene.2020.07.029

Kurşun, B., & Ökten, K. (2019). Thermodynamic analysis of a Rankine cycle coupled with a concentrated photovoltaic thermal system for hydrogen production by a proton exchange membrane electrolyzer plant. International Journal of Hydrogen Energy, 44(41), 22863-22875.
https://doi.org/10.1016/j.ijhydene.2019.07.003

Mohamed R. Gomaa, Riad Ahmad, M. A. Nawafleh. Evaluation of Concentrated Solar Power Systems and the Impact of Different Heat Transfer Fluids on Performance. WSEAS Transactions on Fluid Mechanics 18, 2023, 99-108.
https://doi.org/10.37394/232013.2023.18.10

Rabaa K. Al-farajat, Mohamed R. Gomaa, Mai Z. Alzghoul. Comparison between CSP Systems and Effect of Different Heat Transfer Fluids on the Performance. WSEAS Transactions on Heat and Mass Transfer 17, 2022, pp. 196-205.
https://doi.org/10.37394/232012.2022.17.21

Mosalam, H., Hasan, M, A, M. (2020). Performance Evaluation for the Parabolic Photovoltaic/Thermal Hybrid Solar System. Proceeding of the 26th conference of FRUCT association, Yaroslavl, Russia.

Gomaa, M. R., Mustafa, R. J., Rezk, H., Al-Dhaifallah, M., & Al-Salaymeh, A. (2018). Sizing methodology of a multi-mirror solar concentrated hybrid PV/thermal system. Energies, 11(12).
https://doi.org/10.3390/en11123276

Srivastava, S., & Reddy, K. S. (2017). Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system. Solar Energy, 149, 195-213.
https://doi.org/10.1016/j.solener.2017.04.004

Karathanassis, I. K., Papanicolaou, E., Belessiotis, V., & Bergeles, G. C. (2017). Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling. Renewable Energy, 101, 467-483.
https://doi.org/10.1016/j.renene.2016.09.013

Shunxiang, Z., Li, P., Luo, Q., & Chen, Y. (2021). Experiment study of a hybrid concentrated photovoltaic/thermal(CPV/T) system. In IOP Conference Series: Earth and Environmental Science (Vol. 657). IOP Publishing Ltd.
https://doi.org/10.1088/1755-1315/657/1/012096

Yang, F., Wang, H., Zhang, X., Tian, W., Hua, Y., & Dong, T. (2018). Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system. Solar Energy, 160, 289-296.
https://doi.org/10.1016/j.solener.2017.12.009

Feng, C., Zheng, H., Wang, R., & Ma, X. (2016). Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator. Energy Conversion and Management, 111, 401-408.
https://doi.org/10.1016/j.enconman.2015.12.086

Chen, H., Ji, J., Pei, G., Yang, J., & Zhang, Y. (2018). Experimental and numerical comparative investigation on a concentrating photovoltaic system. Journal of Cleaner Production, 174, 1288-1298.
https://doi.org/10.1016/j.jclepro.2017.11.058

Elsheniti, M. B., Zaheer, S., Zeitoun, O., Alshehri, H., AlRabiah, A., & Almutairi, Z. (2023). Experimental Evaluation of a Solar Low-Concentration Photovoltaic/Thermal System Combined with a Phase-Change Material Cooling Technique. Applied Sciences (Switzerland), 13(1).
https://doi.org/10.3390/app13010025


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize