Open Access Open Access  Restricted Access Subscription or Fee Access

Efficient Diagnosis of Photovoltaic Cell Degradation Based on Deep Learning Using Drone Thermal Imagery


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v11i5.24203

Abstract


Solar energy has recently become the ideal solution for reducing the use of polluting energies. Due to the great importance of this natural and unlimited source of electrical energy, the latter requires a reliable fault diagnosis system with effective and rapid performance in detecting the degradation of PV cells, which are the main energy converters of the photovoltaic system, in order to avoid interruption of power generation and ensure its proper operation. It can be difficult to reach the location of these stations to Diagnose and Detect cell Failures (DDF), so the drone technology is useful in this case in parallel with deep learning techniques in image processing and analysis. In this work, depending on the photoelectric thermal image dataset, abnormal cells are detected only through the use of thermal data because they have a different temperature. We propose a model that detects the defective cell based on one of the deep learning tools called YOLO. The effective performance of the proposed model is verified in detecting degenerated cells with high accuracy and standard speed.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Deep Learning; Photovoltaic Systems; Faults Diagnosis; Fault Detection

Full Text:

PDF


References


IRENA, Renewable Energy Statistics 2020. Renewable hydropower (including mixed plants). 2020.

K. Reinsberger and A. Posch, Bottom-up initiatives for photovoltaic: Incentives and barriers, J. Sustain. Dev. Energy, Water Environ. Syst., vol. 2, no. 2, pp. 108-117, 2014.
https://doi.org/10.13044/j.sdewes.2014.02.0010

A. Baeyens and T. Goffin, European Court of Justice, Eur. J. Health Law, vol. 22, no. 5, pp. 508-516, 2015.
https://doi.org/10.1163/15718093-12341375

S. Sobri, S. Koohi-Kamali, and N. A. Rahim, Solar photovoltaic generation forecasting methods: A review, Energy Convers. Manag., vol. 156, no. May 2017, pp. 459-497, 2018.
https://doi.org/10.1016/j.enconman.2017.11.019

REN21 and R. E. P. N. for the 21 Century, Renewables 2011 Global Status Report. 2011.

A. Jäger-waldau, Snapshot of Photovoltaics-February 2020, no.February. Energies 2020, 13(4), 930.
https://doi.org/10.3390/en13040930

R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, Yield predictions for photovoltaic power plants:empirical validation,recent advances and remaining uncertainties, Prog. Photovoltaics Res. Appl., vol. 20, no. 1, pp. 6-11, 2015.

M. Köntges et al., Performance and reliability of photovoltaic systems subtask 3.2: Review of failures of photovoltaic modules: IEA PVPS task 13: external final report IEA-PVPS. 2014.

A. Chouder and S. Silvestre, Automatic supervision and fault detection of PV systems based on power losses analysis, Energy Convers. Manag., vol. 51, no. 10, pp. 1929-1937, 2010.
https://doi.org/10.1016/j.enconman.2010.02.025

A. Drews et al., Monitoring and remote failure detection of grid-connected PV systems based on satellite observations, Sol. Energy, vol. 81, no. 4, pp. 548-564, 2007.
https://doi.org/10.1016/j.solener.2006.06.019

S. Silvestre, M. A. Da Silva, A. Chouder, D. Guasch, and E. Karatepe, New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators, Energy Convers. Manag., vol. 86, pp. 241-249, 2014.
https://doi.org/10.1016/j.enconman.2014.05.008

W. G. Shin, S. W. Ko, H. J. Song, Y. C. Ju, H. M. Hwang, and G. H. Kang, Origin of bypass diode fault in c-Si photovoltaic modules: Leakage current under high surrounding temperature, Energies, vol. 11, no. 9, 2018.
https://doi.org/10.3390/en11092416

R. Pierdicca, M. Paolanti, A. Felicetti, F. Piccinini, and P. Zingaretti, Automatic faults detection of photovoltaic farms: Solair, a deep learning-based system for thermal images, Energies, vol. 13, no. 24, pp. 1-17, 2020.
https://doi.org/10.3390/en13246496

M. W. Akram et al., CNN based automatic detection of photovoltaic cell defects in electroluminescence images, Energy, vol. 189, p. 116319, 2019.
https://doi.org/10.1016/j.energy.2019.116319

F. Grimaccia, S. Leva, A. Niccolai, and G. Cantoro, Assessment of PV Plant Monitoring System by Means of Unmanned Aerial Vehicles, Proc. - 2018 IEEE Int. Conf. Environ. Electr. Eng. 2018 IEEE Ind. Commer. Power Syst. Eur. EEEIC/I CPS Eur. 2018, pp. 1-6, 2018.
https://doi.org/10.1109/EEEIC.2018.8494532

D. Manno, G. Cipriani, G. Ciulla, V. Di Dio, S. Guarino, and V. Lo Brano, Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images, Energy Convers. Manag., vol. 241, no. May, p. 114315, 2021.
https://doi.org/10.1016/j.enconman.2021.114315

T. Berghout, M. Benbouzid, T. Bentrcia, X. Ma, S. Djurović, and L. H. Mouss, Machine learning-based condition monitoring for pv systems: State of the art and future prospects, Energies, vol. 14, no. 19, pp. 1-24, 2021.
https://doi.org/10.3390/en14196316

J. Kim, M. Rabelo, S. P. Padi, H. Yousuf, E. C. Cho, and J. Yi, A review of the degradation of photovoltaic modules for life expectancy, Energies, vol. 14, no. 14, pp. 1-21, 2021.
https://doi.org/10.3390/en14144278

Lazzaretti AE, Costa CHd, Rodrigues MP, Yamada GD, Lexinoski G, Moritz GL, Oroski E, Goes REd, Linhares RR, Stadzisz PC, et al. A Monitoring System for Online Fault Detection and Classification in Photovoltaic Plants. Sensors. 2020; 20(17):4688.
https://doi.org/10.3390/s20174688

F. Harrou, A. Saidi, Y. Sun and S. Khadraoui, Monitoring of Photovoltaic Systems Using Improved Kernel-Based Learning Schemes, in IEEE Journal of Photovoltaics, vol. 11, no. 3, pp. 806-818, May 2021.
https://doi.org/10.1109/JPHOTOV.2021.3057169

M. U. Ali, H. F. Khan, M. Masud, K. D. Kallu, and A. Zafar, A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography, Sol. Energy, vol. 208, no. August, pp. 643-651, 2020.
https://doi.org/10.1016/j.solener.2020.08.027

M. Dhimish, Defining the best-fit machine learning classifier to early diagnose photovoltaic solar cells hot-spots, Case Stud. Therm. Eng., vol. 25, no. March, p. 100980, 2021.
https://doi.org/10.1016/j.csite.2021.100980

X. Li, Q. Yang, Z. Lou, and W. Yan, Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms, IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 520-529, 2019.
https://doi.org/10.1109/TEC.2018.2873358

S. Deitsch et al., Automatic classification of defective photovoltaic module cells in electroluminescence images, Sol. Energy, vol. 185, no. February, pp. 455-468, 2019.
https://doi.org/10.1016/j.solener.2019.02.067

M. R. U. Rahman and H. Chen, Defects Inspection in Polycrystalline Solar Cells Electroluminescence Images Using Deep Learning, IEEE Access, vol. 8, pp. 40547-40558, 2020.
https://doi.org/10.1109/ACCESS.2020.2976843

X. Li, W. Li, Q. Yang, W. Yan, and A. Y. Zomaya, An Unmanned Inspection System for Multiple Defects Detection in Photovoltaic Plants, IEEE J. Photovoltaics, vol. 10, no. 2, pp. 568-576, 2020.
https://doi.org/10.1109/JPHOTOV.2019.2955183

X. Li, Q. Yang, J. Wang, Z. Chen, and W. Yan, Intelligent fault pattern recognition of aerial photovoltaic module images based on deep learning technique, IMCIC 2018 - 9th Int. Multi-Conference Complexity, Informatics Cybern. Proc., vol. 1, no. Imcic 2018, pp. 22-27, 2018.

H. P. C. Hwang, C. C. Y. Ku, and J. C. C. Chan, Detection of malfunctioning photovoltaic modules based on machine learning algorithms, IEEE Access, vol. 9, pp. 37210-37219, 2021.
https://doi.org/10.1109/ACCESS.2021.3063461

S. Naveen Venkatesh and V. Sugumaran, Fault Detection in aerial images of photovoltaic modules based on Deep learning, IOP Conf. Ser. Mater. Sci. Eng., vol. 1012, no. 1, p. 012030, 2021.
https://doi.org/10.1088/1757-899X/1012/1/012030

S. Lu, T. Sirojan, B. T. Phung, D. Zhang, and E. Ambikairajah, DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems, IEEE Access, vol. 7, pp.45831-45840,2019.
https://doi.org/10.1109/ACCESS.2019.2909267

A. Y. Appiah, X. Zhang, B. B. K. Ayawli, and F. Kyeremeh, Long short-Term memory networks based automatic feature extraction for photovoltaic array fault diagnosis, IEEE Access, vol.7, pp. 30089-30101, 2019.
https://doi.org/10.1109/ACCESS.2019.2902949

T. Tajwar, O. Hassan Mobin, F. R. Khan, S. F. Hossain, M. Islam and M. Mosaddequr Rahman, Infrared Thermography Based Hotspot Detection Of Photovoltaic Module using YOLO, 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), Singapore, Singapore, 2021, pp. 1542-1547.
https://doi.org/10.1109/ECCE-Asia49820.2021.9478998

J. T. Zou and V. G. Rajvee, Drone-based solar panel inspection with 5G and AI Technologies, Proc. 2022 8th Int. Conf. Appl. Syst. Innov. ICASI 2022, pp. 174-178, 2022.
https://doi.org/10.1109/ICASI55125.2022.9774462

A. Eskandari, J. Milimonfared, and M. Aghaei, Line-line fault detection and classification for photovoltaic systems using ensemble learning model based on I-V characteristics, Sol. Energy, vol. 211, no. October, pp. 354-365, 2020.
https://doi.org/10.1016/j.solener.2020.09.071

W. Gao and R. J. Wai, A Novel Fault Identification Method for Photovoltaic Array via Convolutional Neural Network and Residual Gated Recurrent Unit, IEEE Access, vol. 8, pp. 159493-159510, 2020.
https://doi.org/10.1109/ACCESS.2020.3020296

F. Harrou, A. Saidi, Y. Sun, and S. Khadraoui, Monitoring of photovoltaic systems using improved kernel-based learning schemes, IEEE J. Photovoltaics, vol. 11, no. 3, pp. 806-818, 2021.
https://doi.org/10.1109/JPHOTOV.2021.3057169

A. Eskandari, J. Milimonfared, and M. Aghaei, Fault Detection and Classification for Photovoltaic Systems Based on Hierarchical Classification and Machine Learning Technique, IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12750-12759, 2021.
https://doi.org/10.1109/TIE.2020.3047066

H. Momeni, N. Sadoogi, M. Farrokhifar, and H. F. Gharibeh, Fault Diagnosis in Photovoltaic Arrays Using GBSSL Method and Proposing a Fault Correction System, IEEE Trans. Ind. Informatics, vol. 16, no. 8, pp. 5300-5308, 2020.
https://doi.org/10.1109/TII.2019.2908992

C. Kapucu and M. Cubukcu, A supervised ensemble learning method for fault diagnosis in photovoltaic strings, Energy, vol. 227, p. 120463, 2021.
https://doi.org/10.1016/j.energy.2021.120463

C. Wu, Q. Luo, and D. Shou, Image Recognition Technology and Development of YOLO Algorithm, Advances in Transdisciplinary Engineering, Volume 33: Mechatronics and Automation Technology, pp. 32-38, 2022.
https://doi.org/10.3233/ATDE221146

Diwan, T., Anirudh, G. & Tembhurne, J.V. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimed Tools Appl 82, 9243-9275 (2023).
https://doi.org/10.1007/s11042-022-13644-y

Liu, W. et al. (2016). SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision - ECCV 2016. ECCV 2016. Lecture Notes in Computer Science(), vol 9905. Springer, Cham.
https://doi.org/10.1007/978-3-319-46448-0_2

T. -Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, Focal Loss for Dense Object Detection, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 2999-3007.
https://doi.org/10.1109/ICCV.2017.324

A. Greco, C. Pironti, and M. Vento, A deep learning based approach for detecting panels in photovoltaic plants, APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems, January 2020 Article No.: 1 Pages 1-7.
https://doi.org/10.1145/3378184.3378185

Meng Z, Xu S, Wang L, Gong Y, Zhang X, Zhao Y. Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning. Energy Sci Eng. 2022; 00: 810-813.
https://doi.org/10.1002/ese3.1056

W. Yin, S. Lingxin, L. I. Maohuan, S. U. N. Qianlai, and L. I. Xiaosong, PV-YOLO : Lightweight YOLO for Photovoltaic Panel Fault Detection, IEEE Access, vol. 11, no. February, pp. 10966-10976, 2023.
https://doi.org/10.1109/ACCESS.2023.3240894

Lu Jin, Liguo Shi, Kaicheng Liu, Ming Zhong, and Yalei Pang Real-time fault diagnosis of photovoltaic modules for integrated energy systems based on YOLOv7, Proc. SPIE 12800, Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023), 128005V (11 October 2023).
https://doi.org/10.1117/12.3004115

R. Padilla, S. L. Netto and E. A. B. da Silva, A Survey on Performance Metrics for Object-Detection Algorithms, 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 2020, pp. 237-242.
https://doi.org/10.1109/IWSSIP48289.2020.9145130

X. Li et al., Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection, Adv. Neural Inf. Process. Syst., vol. 2020-Decem, pp. 1-14, 2020.

Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, Distance-IoU loss: Faster and better learning for bounding box regression, AAAI 2020 - 34th AAAI Conf. Artif. Intell., no. 2, pp. 12993-13000, 2020.
https://doi.org/10.1609/aaai.v34i07.6999

J. Terven and D. Cordova-Esparza, A Comprehensive Review of YOLO: From YOLOv1 to YOLOv8 and Beyond, pp.1-31,2023, [Online].
Available: http://arxiv.org/abs/2304.00501

L. Jiao, F. A. N. Zhang, F. Liu, and S. Member, A Survey of Deep Learning-Based Object Detection, IEEE Access, vol. 7, pp. 128837-128868, 2019.
https://doi.org/10.1109/ACCESS.2019.2939201


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize