Open Access Open Access  Restricted Access Subscription or Fee Access

Theoretical Design and Experimental Implementation of a Three-Phase Two-Level Inverter with an Adapted Gate Driver Based on Bootstrap Circuit for Grid-Connected Renewable Energy Systems


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v11i4.24194

Abstract


Voltage source inverters play a crucial role in connecting numerous renewable energy sources to the grid. The hardware performances and efficiency of these inverters relies on a compatible and efficient gate driver, the bootstrap circuit is a reliable technique for controlling the gates of inverter switches. Therefore, this article addresses the issue of designing and implementing a three-phase two-level voltage inverter with a gate driver based on a bootstrap circuit. However, inaccuracies in electronic components selection for the bootstrap circuit can potentially lead to a lack of compatibility between the inverter and the gate driver. Consequently, this Incompatibility may engender complications and impede the proper functioning of the inverter. This paper presents the necessary steps for implementing the inverter and the bootstrap gate driver, with a specific focus on the bootstrap circuit. The experimental results obtained from the implemented inverter validate the feasibility and functionality of the circuits. The paper provides detailed explanations of each circuit component through schematics and discusses the testing and validation processes of the implemented inverter and gate diver.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Bootstraps Technique; Gate Driver; Two-Level Three-Phases Voltage Source Inverter (2L-VSI); High-Side and Low-Side Switches; Galvanic Isolation; High-Voltage Applications; Grid-Connected Renewable Energy Systems; Experimental Validations

Full Text:

PDF


References


F. Blaabjerg, Z. Chen and S. B. Kjaer, Power electronics as efficient interface in dispersed power generation systems, IEEE Trans. Power Electron, vol. 19, n. 5, Sept. 2004, 1184-1194.
https://doi.org/10.1109/TPEL.2004.833453

F. Blaabjerg, Y. Yang, D. Yang and X. Wang, Distributed power generation systems and protection, Proceedings of the IEEE, vol. 105, n. 7, Jul. 2017, 1311-1331.
https://doi.org/10.1109/JPROC.2017.2696878

S. Muller, J. Meyer and P. Schegner, Characterization of small photovoltaic inverters for harmonic modeling, in Proc. of ICHQP, May 2014, 659-663.
https://doi.org/10.1109/ICHQP.2014.6842929

J. Scoltock, T. Geyer and U. K. Madawala, Model predictive direct power control for grid-connected NPC converters, IEEE Trans Ind Electron, vol. 62, n. 9, 2015 pp. 5319- 5328 .
https://doi.org/10.1109/TIE.2015.2410259

N. Altin, S. Ozdemir, H. Komurcugil and I. Sefa, Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters, IEEE Trans. Ind. Electron, vol.66, n. 4, April 2019, pp. 2903-2913.
https://doi.org/10.1109/TIE.2018.2847675

H. Yang, Y. Zhang, J. Liang, J. Liu, N. Zhang and P. D. Walker, Robust deadbeat predictive power control with a discrete-time disturbance observer for PWM rectifiers under unbalanced grid conditions, IEEE Trans on Power Electron, vol. 34, n. 1, Jan. 2019, pp. 287-300.
https://doi.org/10.1109/TPEL.2018.2816742

J. Smith, A. Johnson and L. Brown, Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC, Journal of Power Electronics, vol. 15, n. 3, Jan 2019, 123-136.

J. Zhu, Y. Zhang, W. Sun, Y. Lu, L. Shi, Y. Gu and S. Zhang, Noise immunity and its temperature characteristics study of the capacitive-loaded level shift circuit for high voltage gate drive IC, IEEE Transactions on Industrial Electronics, vol. 65, n. 4, 2018, 3027-3034.
https://doi.org/10.1109/TIE.2017.2750615

K. Song, W. Oh, J. Choi, S. Hong and S. Park, A new 1200 V HVIC with high side edge trigger in order to solve the latch on failure by the negative VS surge, IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018 pp. 351-354.
https://doi.org/10.1109/ISPSD.2018.8393675

J. Hwang, T. Jung, J. Kim and D. Kim, Noise immunity enhanced 625V high-side driver, In Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC), 2006, pp. 572-575.
https://doi.org/10.1109/ESSCIR.2006.307489

Z. Yunwu, Z. Jing, S. Guodong, L. Cuichun, S. Weifeng and Q. Qinsong, A noise immunity improved level shift structure for a 600 V HVIC, Journal of Semiconductors, vol. 34, n. 6, 2013, 065008-1-065008-5.
https://doi.org/10.1088/1674-4926/34/6/065008

A. Novelli, L. Giussani and I. Bellomo, New generation of half bridge gate driver ICs for use with low power 3.3 V control applications, IEEE Power Electronics Specialists Conference (PESC), 2004, pp. 3237-3242.

N. Fichtenbaum, M. Giandalia, S. Sharma and J. Zhang, Half-bridge GaN power IcS: Performance and application, IEEE Power Electron. Mag, vol. 4, n. 3, Sep. 2017, 33 -40.
https://doi.org/10.1109/MPEL.2017.2719220

M. Zine, C. Labiod, M. Ikhlef, K. Srairi and M. Benbouzid, Improving Efficiency and Power Output of Switched Reluctance Generators through Optimum Operating Parameters, MDPI Machines, vol. 11 n. 8, 2023, pp. 816-816.
https://doi.org/10.3390/machines11080816

A. Seidel and B. Wicht, Integrated Gate Drivers Based on High-Voltage Energy Storing for GaN Transistors, IEEE Journal of Solid-State Circuits, vol. 53, n. 12, 2018, 1-9.
https://doi.org/10.1109/JSSC.2018.2866948

J.H. Jung, H.G. Ku, W.S. Im, and J.M. Kim, A PWM control strategy for low-speed operation of three-level NPC inverter based on bootstrap gate drive circuit, IEEE Appl. Power Electron. Conf. Expo. (APEC), Fort Worth, TX, USA, Mar. 2014, pp. 297-302.
https://doi.org/10.1109/APEC.2014.6803324

C. Klumpner and N. Shattock, A cost-effective solution to power the gate drivers of multilevel inverters using the bootstrap power supply technique, IEEE Appl. Power Electron. Conf. Expo, Washington, DC, USA, Feb 2009, pp. 1773-1779.
https://doi.org/10.1109/APEC.2009.4802910

J. Adams, Bootstrap component selection for control ICs, Proc. DT-98-2a-98-2a Int. Rectifier, El Segundo, 2001, CA, USA.

DIPIPM application note bootstrap circuit design manual, Dualin- Line Package Intelligent Power Module.: Mitsubishi Electronics Corp, 2016 Tokyo, Japan.

M. Mnati, A. Van den Bossche and J. M. V. Bikorimana, Design and Application of a Bootstrap Circuit Controlled by Pic 24 for a Grid Inverter, 5th IEEE Int. Conf. Renew. ENERGY Res. Appl. -BIRMINGHAM-UK, vol. 5, n. 5, 2016, pp. 85-89.

J. Zhu, W. Sun, Y. Zhang, S. Lu, L. Shi, S. Zhang and W. Su, An Integrated Bootstrap Diode Emulator for 600-V High Voltage Gate Drive IC With P-Sub/P-Epi Technolo-gy, IEEE Trans. Power Electron, vol. 31, 2016, n. 1, pp. 518-523.
https://doi.org/10.1109/TPEL.2015.2411334

H. Chen, L. He, H. Deng, Y. Yin and F. Lin, A high-performance bootstrap switch for low voltage switched-capacitor circuits, IEEE Int. Symp. Radio-Frequency Integr, Technol. Silicon Technol. Heats Up THz, 2014, pp. 7-9.
https://doi.org/10.1109/RFIT.2014.6933258

W.C. Chen, Y.W. Chou, M.W. Chien, H.C. Chen, S.H. Yang, K.H. Chen, Y.H. Lin, C.C. Lee, S.R. Lin and T. Y. Tsai, A dynamic bootstrap voltage technique for a high-efficiency buck converter in an universal serial bus power delivery device, IEEE Trans. Power Electron., vol. 31, n. 4, 2016, pp. 3002-3015.
https://doi.org/10.1109/TPEL.2015.2453511

S. Bhattacharya and S. Natarajan, Design of Bootstrap Circuit for Gate Driver of High-Side Switch, Proceedings of the International Conference on Power and Renewable Energy (ICPRE), 2016, pp. 367-370.

Z. Shen, K. Cheng, W.E and F. Lee, A Bootstrap Capacitor Balancing Technique for High-Side Gate Driver with Cascaded GaN HEMTs, IEEE Transactions on Power Electronics, vol. 28, n. 3, 2019, 1392-1402.

J. Graczkowski, K. Neff and X. Kou, A low-cost gate driver design using bootstrap capacitors for multilevel MOSFET inverters, Proceedings of CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, pp. 1-5.
https://doi.org/10.1109/IPEMC.2006.4778160

J. Adams, Bootstrap component selection for control ICs, Proceedings of DT-98-2a-98-2a International Rectifier, El Segundo, 2001, CA, USA.

Mitsubishi Electronics Corp, DIPIPM application note bootstrap circuit design manual, Dualin-Line Package Intelligent Power Module, 2016, Tokyo, Japan.

S. Banihashemi, and F. Jabbari, Analysis and implementation of a bootstrap-based high-voltage gate driver for power electronics applications, International Journal of Electrical Power and Energy Systems, vol. 112, n. 112, 2019, 114-124.

G. Farivar and M. Azzizi, A comprehensive study on bootstrap technique for high-voltage gate drivers in power electronics applications, Journal of Power Electronics, vol. 18, n. 5, 2018, 1406-1421.

J.J. Graczkowski, K. L. Neff and X. Kou, A low-cost gate driver design using bootstrap capacitors for multilevel MOSFET inverters, Proc. CES/IEEE 5th Int. Power Electron. Motion Control Conf, Shanghai, China, Aug. 2006, pp. 1-5.
https://doi.org/10.1109/IPEMC.2006.4778160

J. Kim and Y. Lee, Analysis of Bootstrap Circuit Operation With an Inverted PWM Drive Scheme for a Three-Phase Inverter for a Brushless DC Motor Drive, Canadian Journal of Electrical and Computer Engineering, vol. 42, n. 1, 2019, 58-65.
https://doi.org/10.1109/CJECE.2019.2891850

Y. Lee and J. Kim, Analysis of Bootstrap Circuit Operation With an Inverted PWM Drive Scheme for a Three-Phase Inverter for a Brushless DC Motor Drive, Canadian Journal of Electrical and Computer Engineering, vol. 42, n. 1, 2019, 58.
https://doi.org/10.1109/CJECE.2019.2891850

M. Kozlov and D. Scheglov, Bootstrap circuit based on the diode-less half-bridge MOSFET driver for fast voltage transients, IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRus), 2020, 245-249.

S. Thangavel, T. Rengarajan and R. Kalpana, Design and implementation of a high-voltage bootstrap circuit for IGBT gate driver, Journal of Electrical Systems and Information Technology, vol. 6, n. 4, 2019 498-509.

Z. Ye, Y. Lei, W. Liu, P. Shenoy and R. Pilawa-Podgurski, Improved Bootstrap Methods for Powering Floating Gate Drivers of Flying Capacitor Multilevel Converters and Hybrid Switched-Capacitor Converter, IEEE Transactions on Power Electronics, 2019, 1-1.
https://doi.org/10.1109/TPEL.2019.2951116

Y. Lei, W. Liu and R. C.N. Pilawa-Podgurski, An analytical method to evaluate and design hybrid switched-capacitor and multilevel converters, IEEE Transactions on Power Electronics, vol. 33, n. 3, March 2018, 2227-2240.
https://doi.org/10.1109/TPEL.2017.2690324

B. Yuan, L. -Q. Xiao, B. -Y. Wang and J. Ying, "High-Speed Dynamic Level Shifter for High-Side Bootstrapped Gate Driver in High-Voltage Buck Regulators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3083-3087, Sept. 2021.
https://doi.org/10.1109/TCSII.2021.3091629

A. Seidel, M. Costa, J. Joos and B. Wicht, Area Efficient Integrated Gate Drivers Based on High-Voltage Charge Storing. IEEE Journal of Solid-State Circuits, vol. 50, n. 7, 2015, 1550-1559.
https://doi.org/10.1109/JSSC.2015.2410797

S. Park and T. Jahns, A self-boost charge pump topology for a gate drive high-side power supply, IEEE Trans. Power Electronics, vol. 20, n. 2, Mar 2005, pp. 300-307.
https://doi.org/10.1109/TPEL.2004.843013

W. Jin and K. Cho, A Supply Voltage Noise Immunity Enhancement Design for High-Voltage Gate Driver IC Based on Bootstrap Circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, n. 9, 2021, 3048-3052.
https://doi.org/10.1109/TCSII.2021.3087596

M. Seifaei, D. Schillinger, M. Kuhl, M. Keller, U. Zschieschang, H. Klauk and Y. Manoli, Modified Bootstrap Switching Scheme for Organic Digital Integrated Circuits. IEEE Solid-State Circuits Letters, 2019, 1-1.
https://doi.org/10.1109/LSSC.2019.2944854

A. Guha and G. Narayanan, Impact of Dead Time on Inverter Input Current, DC-Link Dynamics, and Light-Load Instability in Rectifier-Inverter-Fed Induction Motor Drives. IEEE Transactions on Industry Applications, Vol. 54, n. 2, 2018, 1414-1424.
https://doi.org/10.1109/TIA.2017.2768524

A. Niwa, T. Imazawa, R. Kojima, M. Yamamoto, T. Sasaya, T. Isobe and Tadano, H, A Dead-Time-Controlled Gate Driver Using Current-Sense FET Integrated in SiC MOSFET, IEEE Transactions on Power Electronics, Vol. 33, n. 4, 2018, 3258-13267.
https://doi.org/10.1109/TPEL.2017.2704620

M. Yoshiro, W. Tomofumi and I. Harumitu, Waveform Distortion and Correction Circuit for PWM Inverters with Switching Lag-Times, IEEE Trans. on Ind. Appl, vol. IA-23, n. 5, 2023, pp.881-885,1987.
https://doi.org/10.1109/TIA.1987.4504998

D. Leggate and R. Kerkman, Pulse based time compensator for PWM voltage inverters, IEEE IECON Conf. Rec, 1995, pp. 474-481.

Boughezala Mohammed, S., Srairi, K., Labiod, C., Chemsa, A., Benbouzid, M., A Novel Control Technique Based on Multi-Objective Intelligent Routing Algorithms for Optimum Performances of 12/8 Switched Reluctance Motor, (2022) International Journal on Energy Conversion (IRECON), 10 (1), pp. 1-11.
https://doi.org/10.15866/irecon.v10i1.21763

V.M. Cardenas, S. Horta and R. Echavarra, Elimination of dead time effects in three phase inverters, IEEE Int. Power Electron. Congr, October. 1996, pp. 258-262.

L. Chen and F. Z. Peng, Dead-time elimination for voltage source inverters, IEEE Trans. Power Electron, vol. 23, n. 2, 2008, pp. 574-580.
https://doi.org/10.1109/TPEL.2007.915766

D.B. Rathnayake, S.M.H.K. Samarasinghe, C.I. Medagedara and S.G. Abeyratne, An enhanced pulse-based dead-time compensation technique for PWM-VSI drive, Industrial and Information Systems (ICIIS) 2014 9th International Conference, Dec. 2014 pp. 1-5, 1517.
https://doi.org/10.1109/ICIINFS.2014.7036532

R. Aboub, Mechouma, B. Azoui1, C. Labiod and A. Khechekhouche, A New Multicarrier Sinusoidal Pulse Width Modulation (SPWM) Strategy based on Rooted Tree Optimization (RTO) Algorithm for Reducing Total Harmonic Distortion (THD) of Switched-Capacitor Nine-level Inverter in Grid-connected PV systems, Indonesian Journal of Science and Technology, vol 7. n 1, 2022, pp. 19 - 36.
https://doi.org/10.17509/ijost.v7i1.41716

LMG3410 600-V 12-A Integrated GaN Power Stage, Texas Instrument, Dallas, TX, USA, 2017.

EPC2112: 200 V, 10 A Integrated Gate Driver eGaN IC, Efficient Power Convers. Corp., Segundo, CA, USA, 2018

Texas Instruments, 2.5-A/3.5-A 120-V half-bridge driver with 8-V UVLO and external bootstrap diode, UCC27288 datasheet, Oct. 2020.

Texas Instruments, Bootstrap Circuitry Selection for Half-Bridge Configurations, Application Report SLUA887, August 2018.

P. M. Roschatt, S. Pickering and R. A. McMahon, "Bootstrap Voltage and Dead Time Behavior in GaN DC-DC Buck Converter With a Negative Gate Voltage," in IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7161-7170, Oct. 2016.
https://doi.org/10.1109/TPEL.2015.2507860

D. Han and B. Sarlioglu, Deadtime effect on gan-based synchronous boost converter and analytical model for optimal deadtime selection, IEEE Transactions on Power Electronics, vol. 31, n. 1, 2006, 601-612.
https://doi.org/10.1109/TPEL.2015.2406760

J. Strydom and D. Reusch, Dead-time optimization for maximum efficiency, Efficient Power Conversion Corp. (EPC). El Segundo, California, USA. [Online] 2013.
Available: http://epc-co.com/epc/DesignSupport.aspx

B. Lee and D.B. Ma, A 20MHz On-Chip All-NMOS 3-Level DC-DC Converter with Interception Coupling Dead-Time Control and 3-Switch Bootstrap Gate Driver, IEEE Transactions on Industrial Electronics, vol. 68, n. 7, 2015, 1-1.
https://doi.org/10.1109/TIE.2020.2996148

Habib, M., Ladjici, A., Benbouzid, M., An Improved MPC Control of Grid-Connected Inverter - Application to PV System, (2018) International Journal on Energy Conversion (IRECON), 6 (6), pp. 177-183.
https://doi.org/10.15866/irecon.v6i6.16588


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize