Open Access Open Access  Restricted Access Subscription or Fee Access

Multi-Objective Ant Colony Optimization for Enhancing the Maximum Power of Variable-Speed Wind Turbines Based on PMSG


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v11i5.24121

Abstract


The research work presented in this study focuses on the construction and the analysis of a Maximum Power Point Tracking (MPPT) control system for a Wind Energy Conversion System (WECS) based on a Permanent Magnet Synchronous Generator (PMSG). The PMSG is a commonly used generator for direct-drive and variable-speed wind energy conversion. The study focuses on controlling the generator and the converter on the DC load side to follow the wind speed reference set by the MPPT algorithm. The paper presents the formulation of the optimisation problem, including the optimisation space, the restrictions, and the goals. The design improvement incorporates the use of Ant Colony Optimisation (ACO) to extract the maximum power of the WECS. In this study, both Proportional Integral Derivative (PID) controllers and the ACO heuristic approach are employed for controlling and stabilising the MPP of the power generated by the Wind Turbine (WT). The ACO approach is utilized to determine the optimal settings (Kp, Ki, Kd) based on five performance indicators: Integrated Squared Error (ISE), Integrated Absolute Error (IAE), Integrated Time Absolute Error (ITAE), Integrated Time Squared Error (ITSE), and the Mean Squared Error (MSE). The suggested system is modelled and simulated in Matlab/Simulink by using a 12.3 kW PMSG. The results show generated power, DC bus voltage, electromagnetic torque, and currents. The results of the simulation demonstrate that the WT can successfully track the necessary MPP.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Wind Turbine (WT); PMSG; MPPT; PID Controller; ACO Optimization

Full Text:

PDF


References


M. Chakib, T. Nasser, et A. Essadki, Contribution of Variable Speed Wind Turbine Generator Based on DFIG Using ADRC and RST Controllers to Frequency Regulation, International Journal of Renewable Energy Research, vol. 11, p. 320-331, Jan. 2021.

N. Mrabet, C. Benzazah, et A. El Akkary, Technical Analysis and Comparative Study of three Wind Turbines for a 50 MW wind farm in Laayoune City Morocco, ITM Web Conf., vol. 46, p. 01002, 2022.
https://doi.org/10.1051/itmconf/20224601002

M. H. Qais, H. M. Hasanien, et S. Alghuwainem, Enhanced salp swarm algorithm: Application to variable speed wind generators, Engineering Applications of Artificial Intelligence, vol. 80, p. 82-96, Apr. 2019.
https://doi.org/10.1016/j.engappai.2019.01.011

A. Ansarian et M. J. Mahmoodabadi, Multi-objective optimal design of a fuzzy adaptive robust fractional-order PID controller for a nonlinear unmanned flying system, Aerospace Science and Technology, vol. 141, p. 108541, Oct. 2023.
https://doi.org/10.1016/j.ast.2023.108541

A. Meng et al., A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine, Energy, vol. 260, p. 124957, Dec. 2022.
https://doi.org/10.1016/j.energy.2022.124957

V. Akbari, M. Naghashzadegan, R. Kouhikamali, F. Afsharpanah, et W. Yaïci, Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds, Machines, vol. 10, no 9, p. 785, Sept. 2022.
https://doi.org/10.3390/machines10090785

Y. S. Mohammed, B. B. Adetokun, O. Oghorada, et O. Oshiga, Techno-economic optimization of standalone hybrid power systems in context of intelligent computational multi-objective algorithms, Energy Reports, vol. 8, p. 11661-11674, Nov. 2022.
https://doi.org/10.1016/j.egyr.2022.09.010

A. Pourrajabian, S. Rahgozar, M. Dehghan, D. Wood, « comprehensive multi-objective optimization study for the aerodynamic noise mitigation of a small wind turbine, Engineering Analysis with Boundary Elements, vol. 155, p. 553-564, Oct. 2023.
https://doi.org/10.1016/j.enganabound.2023.06.035

M. Hamzei, S. Khandagh, et N. Jafari Navimipour, A Quality-of-Service-Aware Service Composition Method in the Internet of Things Using a Multi-Objective Fuzzy-Based Hybrid Algorithm, Sensors, vol. 23, no 16, p. 7233, Aug. 2023.
https://doi.org/10.3390/s23167233

S. Sarangi, P. K. Dash, et R. Bisoi, Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm, Engineering Applications of Artificial Intelligence, vol. 126, p. 107034, Nov. 2023.
https://doi.org/10.1016/j.engappai.2023.107034

B. Majout et al., A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG, Energies, vol. 15, no 17, p. 6238, Aug. 2022.
https://doi.org/10.3390/en15176238

Z. Liu, A. Houari, M. Machmoum, M. F. Benkhoris, A. Djerioui, et T. Tang, Experimental investigation of a real-time singularity-based fault diagnosis method for five-phase PMSG-based tidal current applications, ISA Transactions, p. S0019057823003464, Aug. 2023.
https://doi.org/10.1016/j.isatra.2023.07.038

E. F. Morgan, O. Abdel-Rahim, T. F. Megahed, J. Suehiro, S. M. Abdelkader, Fault Ride-Through Techniques for Permanent Magnet Synchronous Generator Wind Turbines (PMSG-WTGs): A Systematic Literature Review, Energies, vol. 15, no 23, p. 9116, Dec. 2022.
https://doi.org/10.3390/en15239116

M. Kamruzzaman Khan Prince, M. T. Arif, A. Gargoom, A. M. T. Oo, et M. Enamul Haque, Modeling, Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System, Journal of Modern Power Systems and Clean Energy, vol. 9, no 5, p. 1054-1065, 2021.
https://doi.org/10.35833/MPCE.2020.000601

B. K. Avu, M. Sainadh Yelamanchili, S. Dugyala, S. G. Kethireddy, S. Preetham Gajji, et S. Mishra, Modelling and Simulation of Wind Turbine Using PMSG, in 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India: IEEE, oct. 2021, p. 16-20.
https://doi.org/10.1109/RDCAPE52977.2021.9633587

C. D. Sanjenbam, B. Singh, PMSG Based Standalone Distributed Generation Integrated Universal Active Filtering System, in 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, United Kingdom: IEEE, May 2023, p. 1-6.
https://doi.org/10.1109/GlobConET56651.2023.10150191

Y. Xu, Z. Wang, Y. Shen, Z. Zou, et M. Liserre, A VSC-Based Isolated Matrix-Type AC/DC Converter Without Bidirectional Power Switches, IEEE Trans. Ind. Electron., vol. 70, no 12, p. 12442-12452, Dec. 2023.
https://doi.org/10.1109/TIE.2023.3236073

I. Toumi, A. Boulmaiz, B. Meghni, O. Hachana, Robust variable step P&O algorithm based MPPT for PMSG wind generation system using estimated wind speed compensation technique, Sustainable Energy Technologies and Assessments, vol. 60, p. 103420. Dec. 2023.
https://doi.org/10.1016/j.seta.2023.103420

S. André, F. Silva, S. Pinto, et P. Miguens, Novel Incremental Conductance Feedback Method with Integral Compensator for Maximum Power Point Tracking: A Comparison Using Hardware in the Loop, Applied Sciences, vol. 13, no 7, p. 4082, mars 2023.
https://doi.org/10.3390/app13074082

A. Raouf, K. B. Tawfiq, E. T. Eldin, H. Youssef, et E. E. El-Kholy, Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance, Energies, vol. 16, no 5, p. 2147, Feb. 2023.
https://doi.org/10.3390/en16052147

N. K. Agarwal, N. Singh, A. Saxena, PID/FO-PID Controller Implementation for the Optimal Controlling of Wind Driven PMSG, in 2023 2nd International Conference on Edge Computing and Applications (ICECAA), Namakkal, India: IEEE, July 2023, p. 1571-1575.
https://doi.org/10.1109/ICECAA58104.2023.10212188

S. S. M. Tripathi, U. P. Singh, S. Singh, N. K. Rai, Himani, A. K. Srivastava, Hardware-in-the-Loop Testing of Grid-tied PMSG-based Wind Power Generation System with Optimum PI Parameters, e-Prime - Advances in Electrical Engineering, Electronics and Energy, p. 100282, Sept. 2023.
https://doi.org/10.1016/j.prime.2023.100282

S. Chebli, A. Elakkary, N. Sefiani, Ant Colony Optimization based on Pareto optimality: application to a congested router controlled by PID regulation, Systems Science & Control Engineering, vol. 6, no 1, p. 360-369, Jan. 2018.
https://doi.org/10.1080/21642583.2018.1509395

M. Ali, A. N. Afandi, H. Nurohmah, R. Rukslin, M. A. Haikal, et M. R. Djalal, Optimization of wind-turbine control using the hybrid ANFIS-PID method based on ant colony optimization,, Proceedings of the International Conference on Advanced Technology and Multidiscipline (ICATAM) 2021: Advanced Technology and Multidisciplinary Prospective Towards Bright Future, Faculty of Advanced Technology and Multidiscipline, Surabaya, Indonesia, 2023, p. 030002.
https://doi.org/10.1063/5.0118865

Rerhrhaye, F., Lahlouh, I., Ennaciri, Y., Benzazah, C., Akkary, A., Sefiani, N., New Solar MPPT Control Technique Based on Incremental Conductance and Multi-Objective Ant Colony Optimization, (2022) International Review of Automatic Control (IREACO), 15 (3), pp. 113-121.
https://doi.org/10.15866/ireaco.v15i3.22076

K.-H. Huang, K.-H. Chao, et T.-W. Lee, An Improved Photovoltaic Module Array Global Maximum Power Tracker Combining a Genetic Algorithm and Ant Colony optimization, Technologies, vol. 11, n° 2, p. 61, Apr. 2023.
https://doi.org/10.3390/technologies11020061

Mrabet, N., Benzazah, C., El Akkary, A., Sefiani, N., Lahlouh, I., Benchrifa, R., Performance Evaluation of Six Methods for Estimating Weibull Distribution Parameters for Wind Energy: Applications to Three Sites in Morocco, (2023) International Review on Modelling and Simulations (IREMOS), 16 (4), pp. 201-209.
https://doi.org/10.15866/iremos.v16i4.22899

Abidi, M., Fizazi, H., Boudali, N., Clustering of Remote Sensing Data Based on Spherical Evolution Algorithm, (2021) International Review of Aerospace Engineering (IREASE), 14 (2), pp. 72-79.
https://doi.org/10.15866/irease.v14i2.19209

Prasetyono, E., Mohammad, L., Dwi Murdianto, F., Performance of ACO-MPPT and Constant Voltage Method for Street Lighting Charging System, (2020) International Review of Electrical Engineering (IREE), 15 (3), pp. 235-244.
https://doi.org/10.15866/iree.v15i3.17309

Gunantara, N., Nurweda Putra, I., Antara, I., The Characteristics of Multi-Criteria Weight on Ad-Hoc Network with Ant Colony Optimization, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (4), pp. 249-256.
https://doi.org/10.15866/irecap.v10i4.19282


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize