Open Access Open Access  Restricted Access Subscription or Fee Access

Adaptive Hybrid Pitch Angle Control and MPPT for PMSG-Based Wind Power Generator Systems


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v10i5.22586

Abstract


This paper presents the hybrid adaptive control approach of a Permanent Magnet Synchronous Generator (PMSG) based on a variable wind speed turbine. The suggested control technique involves controlling both the pitch angle (β) and the hybrid MPPT algorithm, whose proper operation depends on the accuracy of the (β) control. The Fractional Proportional-Integral (FPI) controller-based (PA) control technique was simulated and contrasted with the Proportional-Integral (PI) controller. With further refinements, the hybrid Maximum Power Point Tracking (MPPT) algorithm was employed for optimal power/torque. The effectiveness of the proposed scheme has been verified through simulation work using MATLAB-SIMULINK. The results demonstrated that the adaptive control strategy has good performance and reliability in terms of generation efficiency. The MPPT strategy achieves maximum energy tracking at low speeds while maintaining system stability and constant DC voltages. The FPI controller enhances the performance of the controller by reducing the rise time by 0.3%, the settling time by 2%, and the accuracy of choosing the optimal angle by an average of 3%.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Pitch Control; Adaptive Control; Maximum Power Point Tracking (MPPT)

Full Text:

PDF


References


C. N. Bhende, S. Mishra, and S. G. Malla, Permanent magnet synchronous generator-based standalone wind energy supply system, IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011, doi: 10.1109/TSTE.2011.2159253.
https://doi.org/10.1109/TSTE.2011.2159253

F. Luis and G. Moncayo, Power Conversion And Control Of Wind Energy Systems, Wiley-IEEE Press.

H. Wang, C. Nayar, J. Su, and M. Ding, Control and interfacing of a grid-connected small-scale wind turbine generator, IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 428-434, 2011.
https://doi.org/10.1109/TEC.2011.2116792

L. Barote, C. Marinescu and M. N. Cirstea, Control Structure for Single-Phase Stand-Alone Wind-Based Energy Sources, in IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 764-772, Feb. 2013.
https://doi.org/10.1109/TIE.2012.2206346

L. Barote and C. Marinescu, PMSG wind turbine system for residential applications, SPEEDAM 2010 - Int. Symp. Power Electron. Electr. Drives, Autom. Motion, pp. 772-777, 2010.
https://doi.org/10.1109/SPEEDAM.2010.5542166

R. Salman and S. Himel, Related papers Review of generator systems for direct-drive wind turbines Henk Polinder Electric Machines & their Comparative Study for Wind Energy Conversion Systems (WECSs), 2013.

R. Scott Semken et al., Direct-drive permanent magnet generators for high-power wind turbines: Benefits and limiting factors, IET Renew. Power Gener., vol. 6, no. 1, pp. 1-8, 2012.
https://doi.org/10.1049/iet-rpg.2010.0191

Z. Alnasir and M. Kazerani, Performance comparison of standalone SCIG and PMSG-based wind energy conversion systems, Can. Conf. Electr. Comput. Eng., pp. 1-8, 2014.
https://doi.org/10.1109/CCECE.2014.6900923

R. Tiwari and R. N. Babu, Comparative analysis of pitch angle controller strategies for pmsg based wind energy conversion system, Int. J. Intell. Syst. Appl., vol. 9, no. 5, pp. 62-73, 2017.
https://doi.org/10.5815/ijisa.2017.05.08

X. Luo, Design of an adaptive controller for double-fed induction wind turbine power, Energy Reports, vol. 7, no. xxxx, pp. 1622-1626, 2021.
https://doi.org/10.1016/j.egyr.2021.09.047

A. Hwas and R. Katebi, Wind turbine control using PI pitch angle controller, vol. 2, no. PART 1. IFAC, 2012.
https://doi.org/10.3182/20120328-3-IT-3014.00041

J. Zhang, M. Cheng, Z. Chen, and X. Fu, Pitch angle control for variable speed wind turbines, 3rd Int. Conf. Deregul. Restruct. Power Technol. DRPT 2008, no. May, pp. 2691-2696, 2008.
https://doi.org/10.1109/DRPT.2008.4523867

T. L. Van, T. H. Nguyen, and D. C. Lee, Advanced Pitch Angle Control Based on Fuzzy Logic for Variable-Speed Wind Turbine Systems, IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 578-587, 2015.
https://doi.org/10.1109/TEC.2014.2379293

J. Pande, P. Nasikkar, K. Kotecha, and V. Varadarajan, A review of maximum power point tracking algorithms for wind energy conversion systems, J. Mar. Sci. Eng., vol. 9, no. 11, pp. 1-30, 2021.
https://doi.org/10.3390/jmse9111187

M. K. Dhar, M. T. Ahmed, and A. Al, Study on Pitch Angle Control of a Variable Speed, 2017 IEEE Int. Conf. Power, Control. Signals Instrum. Eng., pp. 285-290, 2017.
https://doi.org/10.1109/ICPCSI.2017.8392258

T. H. M. S. Rashid, A. K. Routh, R. Rana, I. Ferdous, and R. Sayed, A Novel Approach to Maximize Performance and Reliability of PMSG Based Wind Turbine :Bangladesh Perspective American Journal of Engineering Research (AJER), Am. J. Eng. Res., vol. 7, no. 6, pp. 17-26, 2018.

H. Q. Minh, N. Frédéric, E. Najib, and H. Abdelaziz, Control of permanent magnet synchronous generator wind turbine for stand-alone system using fuzzy logic, Proc. 7th Conf. Eur. Soc. Fuzzy Log. Technol. EUSFLAT 2011 French Days Fuzzy Log. Appl. LFA 2011, vol. 1, no. 1, pp. 720-727, 2011.
https://doi.org/10.2991/eusflat.2011.98

M. Nasiri, J. Milimonfared, and S. H. Fathi, Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines, Energy Convers. Manag., vol. 86, pp. 892-900, 2014.
https://doi.org/10.1016/j.enconman.2014.06.055

Y. Errami, M. Ouassaid, and M. Maaroufi, Optimal Power Control Strategy of Maximizing Wind Energy Tracking and Different Operating Conditions for Permanent Magnet Synchronous Generator Wind Farm, Energy Procedia, vol. 74, pp. 477-490, 2015.
https://doi.org/10.1016/j.egypro.2015.07.732

P. Shah and S. Agashe, Review of fractional PID controller, Mechatronics, vol. 38, pp. 29-41, 2016.
https://doi.org/10.1016/j.mechatronics.2016.06.005

R. Ranganayakulu, G. Uday Bhaskar Babu, A. Seshagiri Rao, and D. S. Patle, A comparative study of fractional order PIλ/PIλDµ tuning rules for stable first order plus time delay processes, Resour. Technol., vol. 2, pp. S136-S152, 2016.
https://doi.org/10.1016/j.reffit.2016.11.009

M. Bettayeb and R. Mansouri, Fractional IMC-PID-filter controllers design for non integer order systems, J. Process Control, vol. 24, no. 4, pp. 261-271, 2014.
https://doi.org/10.1016/j.jprocont.2014.01.014

A. Abdelkafi and L. Krichen, New strategy of pitch angle control for energy management of a wind farm, Energy, vol. 36, no. 3, pp. 1470-1479, 2011.
https://doi.org/10.1016/j.energy.2011.01.021

Z. Chen, J. M. Guerrero, and F. Blaabjerg, A review of the state of the art of power electronics for wind turbines, IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
https://doi.org/10.1109/TPEL.2009.2017082

J. Gupta and A. Kumar, Fixed Pitch Wind Turbine-Based Permanent Magnet Synchronous Machine Model for Wind Energy Conversion Systems, J. Eng. Technol., vol. 2, no. 1, p. 58, 2012.
https://doi.org/10.4103/0976-8580.94226

P. Nema, R. K. Nema, and S. Rangnekar, A current and future state of art development of hybrid energy system using wind and PV-solar: A review, Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 2096-2103, 2009.
https://doi.org/10.1016/j.rser.2008.10.006

H. E. M. LOPEZ and (TEZ), Maximum Power Tracking Control Scheme for Wind Generator, Thesis, no. December, 2007.

C. Paper, Modeling and Control of Grid Connected Variable Speed PMSG Based Wind Energy System, Proceedings of the Conference on Advances in Communication and Control Systems (CAC2S 2013) no. April 2013, 2015.

M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator, IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 331-339, 2010.
https://doi.org/10.1109/TIA.2009.2036550

M. E. Haque, K. M. Muttaqi, and M. Negnevitsky, Control of a stand alone variable speed wind turbine with a permanent magnet synchronous generator, IEEE Power Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, pp. 1-9, 2008.
https://doi.org/10.1109/PES.2008.4596245

S. M. Tripathi, A. N. Tiwari, and D. Singh, Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review, Renew. Sustain. Energy Rev., vol. 51, pp. 1288-1305, 2015.
https://doi.org/10.1016/j.rser.2015.06.060

M. Yuhendri, Aslimeri, and M. Muskhir, Optimum torque control of stand alone wind turbine generator system fed single phase boost inverter, Proc. - 2018 2nd Int. Conf. Electr. Eng. Informatics Towar. Most Effic. W. Mak. Deal. with Futur. Electr. Power Syst. Big Data Anal. ICon EEI 2018, no. October, pp. 148-153, 2018.
https://doi.org/10.1109/ICon-EEI.2018.8784319

A. M. De Broe, S. Drouilhet, and V. Gevorgian, A peak power tracker for small wind turbines in battery charging applications, IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1630-1635, 1999.
https://doi.org/10.1109/60.815116

M. H. J. Nadoushan and M. Akhbari, Optimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System, J. Electr. Power Energy Convers. Syst., vol. 1, no. 2, pp. 52-59, 2016.

M. L. Frikh, F. Soltani, N. Bensiali, N. Boutasseta, and N. Fergani, Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches, Comput. Electr. Eng., vol. 95, no. June 2020, p. 107410, 2021.
https://doi.org/10.1016/j.compeleceng.2021.107410

R. El-Khazali, Fractional-order PIλ Dμ controller design, Comput. Math. with Appl., vol. 66, no. 5, pp. 639-646, 2013.
https://doi.org/10.1016/j.camwa.2013.02.015

X. Wang, A. Gambier, and B. M. Vinagre, Fractional order PID control with rate-limited anti-windup for the pitch system of wind turbines, CCTA 2020 - 4th IEEE Conf. Control Technol. Appl., no. 1, pp. 933-938, 2020.
https://doi.org/10.1109/CCTA41146.2020.9206341

W. Cao, N. Xing, Y. Wen, X. Chen, and D. Wang, New adaptive control strategy for a wind turbine permanent magnet synchronous generator (Pmsg), Inventions, vol. 6, no. 1, pp. 1-16, 2021.
https://doi.org/10.3390/inventions6010003

H. Kumar, A. Gupta, R. K. Pachauri, and Y. K. Chauhan, PI/FL based blade pitch angle control for wind turbine used in wind energy conversion system, 2015 Int. Conf. Recent Dev. Control. Autom. Power Eng. RDCAPE 2015, no. 1, pp. 15-20, 2015.
https://doi.org/10.1109/RDCAPE.2015.7281362

M. L. Frikh, F. Soltani, N. Bensiali, N. Boutasseta, and N. Fergani, Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches, Comput. Electr. Eng., vol. 95, no. September, p. 107410, 2021.
https://doi.org/10.1016/j.compeleceng.2021.107410

Tammaruckwattana, S., Reangkittakarn, S., Suppaadirek, N., Ohyama, K., Experimental Verification of Wind Power Generation System Using Diode Bridge Rectifier Circuit with Wind Turbine Simulator, (2022) International Review of Electrical Engineering (IREE), 17 (1), pp. 54-65.
https://doi.org/10.15866/iree.v17i1.20524

Merabet, L., Chaker, A., Kouzou, A., Boulouiha, H., Elaguab, M., Investigation on the Control of DFIG Used in Power Generation Based on Sliding Mode Control and SV-PWM, (2019) International Journal on Energy Conversion (IRECON), 7 (4), pp. 148-161.
https://doi.org/10.15866/irecon.v7i4.17844

Bani Younes, A., Batayneh, W., Khamis, A., Cooperative Aerial-Ground Robotic System Using Genetic Algorithm Auto-Tuned Fractional Order PID Control, (2021) International Review of Automatic Control (IREACO), 14 (6), pp. 348-359.
https://doi.org/10.15866/ireaco.v14i6.21365

Varghese, E., Dasgupta, S., Savier, J., Robust Fractional Order Attitude Controller for Launch Vehicle with Flexible Dynamics, (2021) International Review of Automatic Control (IREACO), 14 (2), pp. 85-92.
https://doi.org/10.15866/ireaco.v14i2.20565


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize