Open Access Open Access  Restricted Access Subscription or Fee Access

Biogas, a Prospect for Renewable Energy Resource in South Africa


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v9i3.19929

Abstract


South Africa’s reliance on fossil fuel to meet its energy demands is well documented. However, there are concerns associated with fossil fuel, especially the fact that it leads to greenhouse gas emissions and climate change. These shortcomings have influenced the government to consider renewable energy options. For example, the application of biogas technology as an alternative source of energy has the potential to fill societal energy gap. Due to the wide-scale availability of biodegradable organic waste that abounds in the country, biogas is considered as a feasible energy source to form part of the country energy mix. Based on the calculated annual potential for electricity production of 189 684 MWh/a and 609 205 MWh/a from fruit waste and cattle liquid manure, respectively, the technology has proven to be dependable and feasible in providing energy in South Africa, where electricity problems thrive, resulting in load shedding. This article aimed at highlighting the potential of biogas technology in South Africa, by overviewing the prospects and bottlenecks of the technology.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Biogas Utilisation; Challenges; Energy; Fertilisers; South Africa; Waste

Full Text:

PDF


References


Weiland, P., 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860.
https://doi.org/10.1007/s00253-009-2246-7

IEA, 2014. Energy Efficiency Indicators: Essentials for Policy Making.

Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., Pant, D., 2017. Waste biorefineries: enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117.
https://doi.org/10.1016/j.biortech.2017.05.097

Patinvoh, R.J., Taherzadeh, M.J., 2019. Challenges of biogas implementation in developing countries. Curr Opin Environ Sci Health. 12, 30–37.

Gerardi, M.H., 2003. Operational conditions. In The microbiology of anaerobic digesters. John Wiley & Sons, New Jersey.

Khanal, S., 2009. Microbiology and biochemistry of anaerobic biotechnology. In Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley & Sons; New Jersey.
https://doi.org/10.1002/9780813804545.ch2

Di Maria, F., Barratta, M., Bianconi, F., Placidi, P., Passeri, D., 2017. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: comparison of system performances and identification of microbial guilds. Waste Manag. 59, 172–180.
https://doi.org/10.1016/j.wasman.2016.10.039

Batidzirai, B., Valk, M., Wicke, B., Junginger, M., Daioglou, V., Euler, W., Faaij, A., 2016. Current and future technical, economic and environmental feasibility of maize and wheat residues supply for biomass energy application: Illustrated for South Africa. Biomass Bioenerg, Vol 92: 106-129.
https://doi.org/10.1016/j.biombioe.2016.06.010

Okorogbona A.O.M., Adebisi L.O. 2012. Animal Manure for Smallholder Agriculture in South Africa. In: Lichtfouse E. (Eds.), Farming for Food and Water Security. Sustainable Agriculture Reviews. Vol 10. Springer, Dordrecht.
https://doi.org/10.1007/978-94-007-4500-1_9

Department of Agriculture, Forestry and Fisheries (DAFF), (2015). Abstract of Agricultural Statistics. Directorate of Agricultural Statistics South Africa. Pretoria.

Statistics South Africa (StatsSA), 2016. Community Survey Statistical Release P0301. (accessed 24 July 2020).
http://cs2016.statssa.gov.za/2016

Zhang, P., Wang, G., 2005.Contribution to reduction of CO2 and SO2 emission by household biogas construction in rural China: analysis and prediction. Transactions of the Chinese Society of Agricultural Engineering. 21(12), 147–151.

Sheikh, M.A., 2009. Renewable energy resource potential in Pakistan. Renew. Sust. Energ. Rev. 13: 2696–2702.
https://doi.org/10.1016/j.rser.2009.06.029

Anyaoku, C.C., Baroutian, S., 2018. Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste. Renew. Sust. Energ. Rev. Vol 90, 982-991.
https://doi.org/10.1016/j.rser.2018.03.009

Sager, M., 2014. Renewable Energy Vision 2030 – South Africa. World Wide Fund for Nature. Technical Report, South Africa.

Department of Energy (DoE), 2015. State of Renewable Energy in South Africa. Department of Energy. Pretoria.

Department of Energy, 2012. Energy Balances, (accessed 30 July 2020).
http://www.energy.gov.za/files/energyStats_frame.html

PWC, 2012. The gas equation, (accessed 28 July 2020).
http://www.pwc.co.za/en/ publications/the-gas-equation.html

Energy Information Administration (EIA), 2015. Technically Recoverable Shale Oil and Shale Gas Resources: South Africa, (accessed 3 August 2020).
http:// www.eia.gov/analysis/studies/worldshalegas/

Government Communication and Information System (GCIS), 2016. South Africa Yearbook 2015/2016. (accessed 28 July 2020).
http://www.gcis.gov.za/content/resourcecentre/sa-info/yearbook2015-16

Department of Energy, 2016. Energy Balances, (accessed 12 December 2020).
http://www.energy.gov.za/files/energyStats_frame.html

Dodic, S.N., Popov, S.D., Dodic, J.M., Rankovic, J.A., Zavargo, Z.Z., Golusin, M.T., 2010. An overview of biomass energy utilization in Vojvodina. Renew. Sust. Energ. Rev. 14:550–3.
https://doi.org/10.1016/j.rser.2009.07.010

Greyling, J.C., Vink, N., Mabaya, E., 2015. South Africa’s Agricultural Sector Twenty years After Democracy (1994 to 2013). Professional Agricultural Workers Journal. Vol. 3: No. 1, 10.

IRENA. Renewable capacity statistics 2017. The International Renewable Energy Agency, 2017. (accessed 3 August 2020).
https://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Capacity_ Statistics_2017.pdf

GTZ, 2016. Estimating the Biogas Potential for Electricity Generation from the Agro-Waste Industry. A Resource Assessment for South Africa. Deutsche Gesellschaft für Internationale Zusammenarbeit (GmbH). Pretoria, South Africa.

Khan, N., le Roes-Hill, M., Welz, P.J., Grandin, K.A., Kudanga, T., van Dyk, J.S., Ohlhoff, C., van Zyl, W.H.E., Pletschke, B.I. 2015. Fruit waste streams in South Africa and their potential role in developing a bioeconomy. S. Afr. J. Sci. Vol 111, number 5/6.

Russo, V., von Blottnitz, H., 2016. Potentialities of biogas installation in South African meat value chain for environmental impacts reduction. J. Clean. Prod. 1-9.
https://doi.org/10.1016/j.jclepro.2016.11.133

Goldblatt, A., 2010. Agriculture: Facts and Trends. WWWF, South Africa.

Pak, B., Biogas plants, equipment’s and services. http://betapak.org; 2010. (accessed 4 August 2020).
Available: http://betapak.org

Food and Agriculture Organization Statistics (FAOSTAT), 2015. Food and Agriculture Data. (accessed 3 August 2020).
http://faostat3.fao.org/home/E

Department of Agriculture and Fisheries (DAF), 2015. Queensland Government department of Agriculture. (accessed 4 August 2020).
https://www.daf.qld.gov.au/

He, Z., Griffin, T., Honeycutt, C., 2004. Phosphorus distribution in dairy manures. J. Environ. Qual. 33:1528–34.

Barker, J., Zublena, J., 1996. Livestock manure nutrient assessment in North Carolina. North Carolina Cooperative Extension Service. North Carolina.

He, P.J., 2010. Anaerobic digestion: an intriguing long history in China. Waste Manag 30(4):549–50.
https://doi.org/10.1016/j.wasman.2010.01.002

Mshandete, A.M. and Parawira, W. 2009. Biogas technology research in selected sub-Saharan African countries-A review. Afri. J. Biotechnol. 8: 116-125.

Rupf, G.V., Bahri, P.A., de Boer, K., Mc Henry, M.P., 2015. Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. Renew. Sust. Energ. Rev. 52, 468-476.
https://doi.org/10.1016/j.rser.2015.07.107

Jorgensen, P.J., 2009. Biogas-Green Energy. Digisource, Denmark.

Tiepelt, M., 2015. Status quo of the biogas sector development in South Africa as well as the way forward. GIZ SAGEN Short-term Biogas Training Seminar. Pretoria, South Africa.

ESI Africa, 2016. Biogas South Africa’s great untapped potential. (accessed 4 August 2020).

https://www.esiafrica.com/magazine-article/biogas-south-africas-great-untapped-potential/

South Africa Biogas Industry (SABIA), 2015. Biogas in South Africa German Conference. Sandton, South Africa.

Munganga, G., 2013. Overview of biogas market in South Africa. Cape Town.

Ruffini, A. (2013). SA not using its biogas potential. ESI Africa: Africa's Power Journal.
http://www.esiafrica.com/sa-not-using-its-biogas-potential/

Okudoh, V., Trois, C, Workneh T, & Schmidt S. The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review. Renew Sust Energ Review, (2014); 39: 1035-52.
https://doi.org/10.1016/j.rser.2014.07.142

South Africa Biogas Industry (SABIA), 2013. Biogas-Conversations around challenges and opportunities. A report on the first National Biogas Conference, 30-31 October. Vulindlela Academy, Midrand. South Africa.

Mutungwazi, A., Mukumba, P., Makaka, G., 2018. Biogas digester types installed in South Africa: A review. Renew. Sust. Energ. Rev. 172-180.
https://doi.org/10.1016/j.rser.2017.07.051

Bio2Watt. 2014. Bronkhorstpruit Biogas Plant (Pty) Ltd. (accessed 2 August 2020).
http://www.bio2watt.com

Amigun, B., von Blottnitz, H., 2007. Investigation of scale economies for African biogas installations. Energy Convers. Manag. 48, 3090-3094.
https://doi.org/10.1016/j.enconman.2007.05.009

Smith, J.U., 2011. The Potential of Small-Scale Biogas Digesters to Alleviate Poverty and Improve Long Term Sustainability of Ecosystem Services in Sub-Saharan Africa. Interdisciplinary Expert Workshop, Kampala (Group I) and Addis Ababa (Group II). pp. 4-5.

Hill, D.T., Bolte, J.P., 2000. Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation. Bioresour. Technol. 74(3):241-247.
https://doi.org/10.1016/s0960-8524(00)00008-0

Ghafoori, E., Flynn, P.C., 2007. Optimizing the Size of Anaerobic Digesters. Transactions of the ASABE. 50(3): 1029-1036.
https://doi.org/10.13031/2013.23143

Statistics South Africa (StatsSA), 2015. General household survey. Statistical release, P0318. (accessed 24 July 2020).
http://cs2015.statssa.gov.za/2015

Uhunamure, S.E., Nethengwe, N.S., and Musyoki, A., 2016. Emissions and deforestation associated with household fuel wood use: A case of Thulamela local municipality, South Africa. Africa Insight. Vol 45 (4), 108-127.
https://doi.org/10.17159/2413-3051/2017/v28i1a1635

Mohanty, M.k., Ray, N.H., Mohanty, M.C., 2016. Biogas Compression and Storage System for Cooking Applications in Rural Households. International Journal of Renewable Energy Research. Vol 6(2): 593-598.

Biogas Team, 207. Biogas for better life, an African initiative. Business plan 2006-2020. Pretoria, South Africa.

Food and Agriculture Organization (FAO), 2010. Criteria and indicators for sustainable woodfuels. FAO, Rome.

Pereira, C.P., 2009. Anaerobic digestion in sustainable biomass chain. Wgeningen Universiteit (Wageningen University). Wageningen.

Erdogdu, E., 2008. An expose of bioenergy and its potential and utilization in Turkey. Energy Policy. 36, 2182-2190.
https://doi.org/10.1016/j.enpol.2008.02.041

Han, J.L., Mol, A.P.J., Yonglong L., Zhang L., 2008. Small-scale bioenergy projects in rural China-lessons to be learnt. Energy Policy. 36, 2154–2162.
https://doi.org/10.1016/j.enpol.2008.03.001

Iniyan, S., Jagadeesan, T.R., 1997. A Comparative Study of Critical factors influencing the Renewable Energy Systems Use in the Indian Context. Renew. Energy, 3, 299- 317.
https://doi.org/10.1016/s0960-1481(97)00006-2

Akpinar, A., Kömurcu, M.I., Kankal, M., Özolcer I.H., Kaygusuz, K., 2008. Energy situation and renewables in Turkey and environmental effects of energy use. Renew. Sust. Energ. Rev. 12, 2013-2039.
https://doi.org/10.1016/j.rser.2007.04.011

Walekhwa, P., Mugisha, J., Drake, L., 2009. Biogas energy from family-sized digesters in Uganda: critical factors and policy implications. Energy Policy, 37(7), 2754-62.
https://doi.org/10.1016/j.enpol.2009.03.018

South Africa Biogas Industry (SABIA), 2016. An Assessment of the Skills Need and Estimation of the Job Potential. (accessed 30 July 2020).
www.crses.sun.ac.za

GTZ, 2015. Biogas potential in selected waste water treatment plants: Results from scoping studies in nine municipalities. South African-German Energy Programme (GIZ-SAGEN), Pretoria, South Africa.

Roubik, H., Mazancova J., 2020. Suitability of small-scale biogas system based on livestock manure for rural areas of Sumatra. Environmental Development Vol 33, 1000505.
https://doi.org/10.1016/j.envdev.2020.100505

Baredar, P., Khare, V., Nema, S., 2020. Biogas digester plant. Design and Optimization of Biogas Energy Systems, 79-155.
https://doi.org/10.1016/b978-0-12-822718-3.00003-4

Pooja, G., Goldy S., Shivali S., Lakheer S., Virendra K.V., 2020. Biogas production from waste: technical overview, progress, and challenges. Bioreactors, 89-104.
https://doi.org/10.1016/b978-0-12-821264-6.00007-3

Gustavo, L., Oliveira S., 2020. The role and impacts of policies in hampering the biogas transition in Brazil. The regulation and policy of Latin America energy transitions, 234-259.
https://doi.org/10.1016/b978-0-12-819521-5.00014-0

Mwirigi, J., Balana, B.B., Mugisha, J., Walekhwa P., Melamu, R., Nakami, S., Makenzi, P., 2014. Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: A review. Biomass Bioenerg. 70, 17-25.
https://doi.org/10.1016/j.biombioe.2014.02.018

Mukumba, P., Makaka, G., Mamphweli, S., 2016. Biogas Technology in South Africa, Problems, Challenges and Solutions. International Journal of Sustainable Energy and Environmental Research, 5(4): 58-69.
https://doi.org/10.18488/journal.13/2016.5.4/13.4.58.69

Roopnarain, A., Adeleke, R., 2017. Current status, hurdles and future prospects of biogas digestion technology in Africa. Renew. Sust. Energ. Rev. 67, 1162–1179.
https://doi.org/10.1016/j.rser.2016.09.087

Nevzorova, T., Kutcherov, V., 2019. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review, Energy Strateg. Rev. 26, 1004-14.
https://doi.org/10.1016/j.esr.2019.100414


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize