Open Access Open Access  Restricted Access Subscription or Fee Access

Investigation of Multi-Way Forced Convective Cooling on the Backside of Solar Panels


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v8i5.19516

Abstract


The surface temperature of a photovoltaic panel has a major impact on its efficiency and performance. Therefore, it is essential to keep the temperatures of a photovoltaic module within an optimum operating range and avoid abnormal distribution of temperatures on the panel. This paper investigates a forced convective cooling method using different cooling paths and directions on the backside of a PV panel. The cooling paths (or patterns) have been generated using five DC power fans that have worked as inlets and outlets of coolant air. The experiments have been conducted indoors and outdoors where five cooling patterns have been studied. The results have showed that certain cooling patterns have generated a significant decrease in surface temperatures between 27.5% and 32.8% with a uniform distribution of temperatures while other cooling patterns have only ranged between 12.5% and 17% and non-uniform distribution of temperatures. The results have also showed similarities between the indoor and the outdoor experiment results in terms of electrical and thermal efficiencies, power output, and best pattern types.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Convective Cooling; Photovoltaic; Experimental Analysis; Renewable Energy

Full Text:

PDF


References


Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192-203.
https://doi.org/10.1016/j.rser.2017.05.053

Hu, J., Chen, W., Yang, D., Zhao, B., Song, H., & Ge, B. (2016). Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Applied energy, 173, 40-51.
https://doi.org/10.1016/j.apenergy.2016.03.111

Ajdid, R., Ouassaid, M., Maaroufi, M., Modeling and Simulation of a Novel Photovoltaic Solar System, (2017) International Journal on Energy Conversion (IRECON), 5 (6), pp. 171-179.
https://doi.org/10.15866/irecon.v5i6.13802

Manasrah, A., Al Zyoud, A., & Abdelhafez, E. (2019). Effect of color and nano film filters on the performance of solar photovoltaic module. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-11.
https://doi.org/10.1080/15567036.2019.1631907

Paul, D. I., Smyth, M., & Zacharopoulos, A. (2019). The effect of non-uniformities in temperature on the performance parameters of an isolated cell photovoltaic module with a compound parabolic concentrator. International Journal of Renewable Energy Technology, 10(1-2), 3-25.
https://doi.org/10.1504/ijret.2019.10017686

Chandrasekar, M., Rajkumar, S., & Valavan, D. (2015). A review on the thermal regulation techniques for non integrated flat PV modules mounted on building top. Energy and Buildings, 86, 692-697.
https://doi.org/10.1016/j.enbuild.2014.10.071

Sathe, T. M., & Dhoble, A. S. (2017). A review on recent advancements in photovoltaic thermal techniques. Renewable and Sustainable Energy Reviews, 76, 645-672.
https://doi.org/10.1016/j.rser.2017.03.075

Climate and average monthly weather in Amman (Amman Governorate), Jordan. (2020, July/August).
Retrieved July 01, 2020, from:
https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Amman,Jordan

Zhang, C., Shen, C., Wei, S., Wang, Y., Lv, G., & Sun, C. (2020). A review on recent development of cooling technologies for photovoltaic modules. Journal of Thermal Science, 1-21.
https://doi.org/10.1007/s11630-020-1350-y

Nižetić, S., Čoko, D., Yadav, A., & Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy conversion and management, 108, 287-296.
https://doi.org/10.1016/j.enconman.2015.10.079

Krauter, S. (2004). Increased electrical yield via water flow over the front of photovoltaic panels. Solar energy materials and solar cells, 82(1-2), 131-137.
https://doi.org/10.1016/j.solmat.2004.01.011

Mehrotra, S., Rawat, P., Debbarma, M., & Sudhakar, K. (2014). Performance of a solar panel with water immersion cooling technique. International Journal of Science, Environment and Technology, 3(3), 1161-1172.

Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275-286.
https://doi.org/10.1016/j.solmat.2016.10.047

Chandel, S. S., & Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, 1342-1351.
https://doi.org/10.1016/j.rser.2017.02.001

Sedaghat, A., Karami, M. R., & Eslami, M. (2019). Improving Performance of a Photovoltaic Panel by Pin Fins: A Theoretical Analysis. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-8.
https://doi.org/10.1007/s40997-019-00324-w

Ahmed, R., & Nabil, K. A. I. (2017). Computational analysis of phase change material and fins effects on enhancing PV/T panel performance. Journal of Mechanical Science and Technology, 31(6), 3083-3090.
https://doi.org/10.1007/s12206-017-0552-z

Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 188, 484-494.
https://doi.org/10.1016/j.solener.2019.06.036

Zhao, B., Hu, M., Ao, X., Xuan, Q., & Pei, G. (2020). Spectrally selective approaches for passive cooling of solar cells: A review. Applied Energy, 262, 114548.
https://doi.org/10.1016/j.apenergy.2020.114548

Amelia, A. R., Irwan, Y. M., Irwanto, M., Leow, W. Z., Gomesh, N., Safwati, I., & Anuar, M. A. M. (2016). Cooling on photovoltaic panel using forced air convection induced by DC fan. International Journal of Electrical and Computer Engineering, 6(2), 526.
https://doi.org/10.11591/ijece.v6i2.pp526-534

Kaiser, A. S., Zamora, B., Mazón, R., García, J. R., & Vera, F. (2014). Experimental study of cooling BIPV modules by forced convection in the air channel. Applied energy, 135, 88-97.
https://doi.org/10.1016/j.apenergy.2014.08.079

Tiwari, A. K., Kumar, R., Pande, R. R., Sharma, S. K., & Kalamkar, V. R. (2020). Effect of forced convection cooling on performance of solar photovoltaic module in rooftop applications. In Advances in Energy Research, Vol. 1 (pp. 159-172). Springer, Singapore.
https://doi.org/10.1007/978-981-15-2666-4_16

Koita, D., Popa, C. V., Bruno, R., & Galatanu, C. D. (2019). Numerical study of the effect of wind on the cooling of photovoltaic panels. In E3S Web of Conferences (Vol. 111). EDP Sciences.
https://doi.org/10.1051/e3sconf/201911101057

Martin-Carron, L., Becker, R., Graebling, D., Luce, R., Ugarte, D., Macq, A., & Cristi, N. (2016). Air cooling of photovoltaic panels: a numerical approach. In Proceedings 32nd European Photovoltaic Solar Energy Conference and Exhibition, pp. 127 - 130.
https://doi.org/10.4229/EUPVSEC20162016-1BV.5.6

Kim, J. H., Park, S. H., & Kim, J. T. (2014). Experimental performance of a photovoltaic-thermal air collector. Energy Procedia, 48, 888-894.
https://doi.org/10.1016/j.egypro.2014.02.102

Kasaeian, A., Khanjari, Y., Golzari, S., Mahian, O., & Wongwises, S. (2017). Effects of forced convection on the performance of a photovoltaic thermal system: An experimental study. Experimental Thermal and Fluid Science, 85, 13-21.
https://doi.org/10.1016/j.expthermflusci.2017.02.012

Abdullah, A. L., Misha, S., Tamaldin, N., & Mohd, M. A. (2019). Numerical analysis of solar hybrid photovoltaic thermal air collector simulation by ANSYS. CFD Letter, 11(2), 1-11.

Wu, S. Y., Wang, T., Xiao, L., & Shen, Z. G. (2019). Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Solar Energy, 180, 489-500.
https://doi.org/10.1016/j.solener.2019.01.043

Bergman, T. L., Incropera, F. P., Lavine, A. S., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons.

Incropera, F. P., Lavine, A. S., Bergman, T. L., & DeWitt, D. P. (2007). Fundamentals of heat and mass transfer. Wiley.

Alrwashdeh, S. S., & FMA, M. A. S. (2018). Solar radiation map of Jordan governorates. International Journal of Engineering & Technology, 7(3), 1664-1667.
https://doi.org/10.14419/ijet.v7i3.15557

Jaszczur, M., Hassan, Q., Teneta, J., Majewska, E., & Zych, M. (2018). An analysis of temperature distribution in solar photovoltaic module under various environmental conditions. In MATEC Web of Conferences (Vol. 240, p. 04004). EDP Sciences.
https://doi.org/10.1051/matecconf/201824004004

Yandri, E. (2019). Dataset of the PV surface temperature distribution when generating electricity (PV-On) and without generating electricity (PV-Off) using Halogen Solar Simulator. Data in brief, 27, 104578.
https://doi.org/10.1016/j.dib.2019.104578

Bahaidarah, H. M., Baloch, A. A., & Gandhidasan, P. (2016). Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 57, 1520-1544.
https://doi.org/10.1016/j.rser.2015.12.064

Dhimish, M., & Badran, G. (2020). Current limiter circuit to avoid photovoltaic mismatch conditions including hot-spots and shading. Renewable Energy, 145, 2201-2216.
https://doi.org/10.1016/j.renene.2019.07.156

Amanlou, Y., Hashjin, T. T., Ghobadian, B., & Najafi, G. (2018). Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Applied Thermal Engineering, 141, 413-421.
https://doi.org/10.1016/j.applthermaleng.2018.05.070

Wu, S. Y., Wang, T., Xiao, L., & Shen, Z. G. (2019). Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Solar Energy, 180, 489-500.
https://doi.org/10.1016/j.solener.2019.01.043

Wu, S. Y., Chen, C., & Xiao, L. (2018). Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel. Renewable Energy, 125, 936-946.
https://doi.org/10.1016/j.renene.2018.03.023

Yu, Q., Hu, M., Li, J., Wang, Y., & Pei, G. (2020). Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector. Renewable Energy, 153, 404-419.
https://doi.org/10.1016/j.renene.2020.01.143

Tkachenko, S., Timchenko, V., Yeoh, G., & Reizes, J. (2019). Effects of radiation on turbulent natural convection in channel flows. International Journal of Heat and Fluid Flow, 77, 122-133.
https://doi.org/10.1016/j.ijheatfluidflow.2019.03.009

Kim, J., & Nam, Y. (2019). Study on the cooling effect of attached fins on PV using CFD simulation. Energies, 12(4), 758.
https://doi.org/10.3390/en12040758

Zhou, J., Ke, H., & Deng, X. (2018). Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector. Solar Energy, 174, 735-742.
https://doi.org/10.1016/j.solener.2018.09.063

Piarah, W., Djafar, Z., Hariyanto, H., Mustofa, M., A New Simulation of Photovoltaic and Thermoelectric Generator Hybrid System with a Beam Splitter Cold and Hot Mirror for Low Intensity, (2019) International Review of Mechanical Engineering (IREME), 13 (9), pp. 559-567.
https://doi.org/10.15866/ireme.v13i9.17884

Seapan, M., Hishikawa, Y., Yoshita, M., & Okajima, K. (2020). Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Solar Energy, 204, 459-465.
https://doi.org/10.1016/j.solener.2020.05.019

Muneeshwaran, M., Sajjad, U., Ahmed, T., Amer, M., Ali, H. M., & Wang, C. C. (2020). Performance improvement of photovoltaic modules via temperature homogeneity improvement. Energy, 117816.
https://doi.org/10.1016/j.energy.2020.117816

Shigrekar, N. (2015). Quantifying Air Flow Rate Through A Server In An Operational Data Center And Assessing The Impact Of Using Theoretical Fan Curve, Master Thesis In Mechanical Engineering The University Of Texas At Arlington, August 2015

Wang, C. (2018). Noise source analysis for two identical small axial-flow fans in series under operating condition. Applied Acoustics, 129, 13-26.
https://doi.org/10.1016/j.apacoust.2017.07.010


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize