Open Access Open Access  Restricted Access Subscription or Fee Access

DSP in the Loop Implementation of a Backstepping Controller for Wind Energy Conversion System Based on a Doubly Fed Induction Generator Connected to Grid

Bouchaib Rached(1*), Mustapha Elharoussi(2), Elhassane Abdelmounim(3)

(1) Laboratory of Signal Analysis and Information Processing, FST Settat, Hassan 1st University, Morocco
(2) Laboratory of Signal Analysis and Information Processing, FST Settat, Hassan 1st University, Morocco
(3) Laboratory of Signal Analysis and Information Processing, FST Settat, Hassan 1st University, Morocco
(*) Corresponding author


DOI: https://doi.org/10.15866/irecon.v7i4.17790

Abstract


This paper deals with the design and implementation of the control strategy of a grid connected Doubly Fed Induction Generator wind turbine on a TMS320F28335 Digital Signal Processor (DSP). The synthesized controller is a nonlinear Backstepping control law whose stability is guaranteed in the context of Lyapunov stability theory. The control aim is to optimize the power extracted by the generator for large wind speed variations through Maximum Power Point Tracking (MPPT) and Unity Power Factor (UPF) control. These command strategies are implemented in order to achieve the following specifications: good static precision for optimal energy conversion; electrical dynamics as high as possible regardless of slow mechanical dynamics, smooth transient without overshoots that could damage the lifecycle of the machine and converters, rapid disturbance isolation and robustness to any parametric variations or uncertainties. The results of the Hardware in the Loop (HIL) implementation on DSP show satisfactory performance in terms of response time, setpoint tracking, stability, and robustness under stochastic wind speed profile and parameter variations.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Wind Energy Conversion System; Doubly Fed Induction Generator; Digital Signal Processor; Hardware in the Loop; Backstepping; Maximum Power Point Tracking; Lyapunov Stability Theory

Full Text:

PDF


References


D. Rekioua, Wind Power Electric Systems: Modeling, Simulation and Control (Springer, 2014).

Gonzalo Abad, J. Lopez, M. A. Rodriguez, L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine Modeling and Control for Wind Energy Generation (IEEE, WILEY, 2011).
https://doi.org/10.1002/9781118104965

B. Rached, M. Elharoussi, E. Abdelmounim, Power Control of a Wind Energy Conversion System based on a Doubly Fed Induction Generator, the Third International Conference on Computing and Wireless Communication Systems, 2019, pp. 1–6.
https://doi.org/10.4108/eai.24-4-2019.2284101

B. Rached, M. Elharoussi, and E. Abdelmounim, Fuzzy Logic Control for Wind Energy Conversion System based on DFIG, 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 2019, pp. 1–6.
https://doi.org/10.1109/wits.2019.8723722

Hasanzadeh, A., Edrington, C.S., Maghsoudlou, B., Fleming, F., Mokhtari, H., Multi-loop linear resonant voltage source inverter controller design for distorted loads using the linear quadratic regulator method, IET Power Electron, vol.5, no. 6, 2012, pp. 841–851.
https://doi.org/10.1049/iet-pel.2011.0400

Lhachimi, H., Sayouti, Y., Elkouari, Y., The Comparison and Analysis of the DFIG Behavior Under PI, Fuzzy and Sliding Mode Controllers for Wind Energy Conversion System in the Grid Connected Mode, (2018) International Review of Automatic Control (IREACO), 11 (3), pp. 113-123.
https://doi.org/10.15866/ireaco.v11i3.14322

A. Kalantar Zadeh, L. Ilan Kashkooli, S. Alireza Mirzaee, Designing a power inverter and comparing back-stepping, slinding-mode and fuzzy controllers for a signal-phase inverter in an emergency power supply, Ciencia e Natura, v.37, no. 2, juin. 2015, p. 175-181
https://doi.org/10.5902/2179460x20769

Reddak, M., Berdai, A., Gourma, A., Boukherouaa, J., Belfiqih, A., Enhanced Sliding Mode MPPT and Power Control for Wind Turbine Systems Driven DFIG (Doubly-Fed Induction Generator), (2016) International Review of Automatic Control (IREACO), 9 (4), pp. 207-215.
https://doi.org/10.15866/ireaco.v9i4.9739

Benbouzid, M., Beltran, B., Ezzat, M., Breton, S., DFIG Driven Wind Turbine Grid Fault-Tolerance Using High-Order Sliding Mode Control, (2013) International Review on Modelling and Simulations (IREMOS), 6 (1), pp. 29-32.

M. El Azzaoui, H. Mahmoudi, and C. Ed-dahmani, Backstepping control of the doubly fed induction generator using Xilinx System Generator for implementation on FPGA, 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), 2016, pp. 599–604.
https://doi.org/10.1109/icmcs.2016.7905592

Sabiri, Z., Machkour, N., Rabbah, N., Nahid, M., Kheddioui, E., Command of a Doubly-Fed Induction Generator with a Backstepping Controller for a Wind Turbine Application, (2017) International Review of Automatic Control (IREACO), 10 (1), pp. 56-62.
https://doi.org/10.15866/ireaco.v10i1.10829

El Malah, M., Ba-razzouk, A., Abdelmounim, E., Madark, M., Robust Nonlinear Sensorless MPPT Control with Unity Power Factor for Grid Connected DFIG Wind Turbines, (2018) International Review on Modelling and Simulations (IREMOS), 11 (5), pp. 313-324.
https://doi.org/10.15866/iremos.v11i5.15018

Madark, M., Ba-Razzouk, A., Abdelmounim, E., El Malah, M., An Effective Method for Rotor Time-Constant and Load Torque Estimation for High Performance Induction Motor Vector Control, (2017) International Review on Modelling and Simulations (IREMOS), 10 (6), pp. 410-422.
https://doi.org/10.15866/iremos.v10i6.12624

I. Munteanu, Optimal Control of Wind Energy Systems: Towards a Global Approach (Springer, 2008).

P. M. M. Bongers, Modeling and Identification of Flexible Wind Turbines and A Factorizational Approach to Robust Control Design (TR diss 2395, june 1994).

B. Beltran, T. Ahmed-Ali and M. E. H. Benbouzid, Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems, 2007 IEEE International Electric Machines & Drives Conference, Antalya, 2007, pp. 943-948.
https://doi.org/10.1109/iemdc.2007.382801

G. S. Kaloi, J. Wang, and M. H. Baloch, Active and reactive power control of the doubly fed induction generator based on wind energy conversion system, Energy Reports, vol. 2, Nov. 2016, pp. 194–200.
https://doi.org/10.1016/j.egyr.2016.08.001

C. Hamon, K. Elkington, and M. Ghandhari, Doubly-fed induction generator modeling and control in DigSilent PowerFactory, 2010 International Conference on Power System Technology, pp. 1–7.
https://doi.org/10.1109/powercon.2010.5666596

S. Khojet El Khil, I. Slama-Belkhodja, M. Pietrzak-David, and B. de Fornel, Power distribution law in a Doubly Fed Induction Machine, Math. Comput. Simul., vol. 71, no. 4–6, Jun. 2006, pp. 360–368.
https://doi.org/10.1016/j.matcom.2006.02.019

L. Ammeh, H. El Fadil, A. Yahya, K. Ouhaddach, F.Giri, T. Ahmed-Ali, A Nonlinear Backstepping Controller for Inverter used in Microgrids, IFAC PapersOnLine 50-1 (2017) 7032-7037.
https://doi.org/10.1016/j.ifacol.2017.08.1348

E. Kolbasi and M. Seker, Nonlinear robust backstepping control method approach for single phase inverter, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, pp. 954-958.
https://doi.org/10.1109/mmar.2016.7575266

H. Sun, Y. Han, and L. Zhang, Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode, J. Control Sci. Eng., vol. 2018, Jan. 2018, pp. 1–11.
https://doi.org/10.1155/2018/5342971

M. A. Abdullah, A. H. M. Yatim, and Chee Wei Tan, A study of maximum power point tracking algorithms for wind energy system, 2011 IEEE Conference on Clean Energy and Technology (CET), pp. 321–326.
https://doi.org/10.1109/cet.2011.6041484

F. M. Ramzi Trabelsi, T. Gallah, A. Kheder, M F. Mimouni, Real-time implementation of Backstepping Control for an Induction Motor drives using dSpace DS-1104 control board, 10th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA’2009, Hammamet Tunis, pp. 1–12.

M. Krstić, I. Kanellakopoulos, P. V. Kokotović, Nonlinear and Adaptive Control Design (Wiley, 1995).

A. Elrajoubi, S. S. Ang, and A. Abushaiba, TMS320F28335 DSP programming using MATLAB Simulink embedded coder: Techniques and advancements, 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–7.
https://doi.org/10.1109/compel.2017.8013418

M. Elhaissouf, E. Lotfi, B. Rached, M. Elharoussi, and A. Barazzouk, DSP Implementation in the Loop of the Indirect Rotor Field Orientation control for the Three-Phase Asynchronous Machine, 2nd International Conference on Computing and Wireless Communication Systems - ICCWCS’17, 2017, pp. 1–7.
https://doi.org/10.1145/3167486.3167541

E. Lotfi, B. Rached, M. Elhaissouf, M. Elharoussi, and E. Abdelmounim, DSP Implementation in the Loop of the Vector Control Drive of a Permanent Magnet Synchronous Machine, 2nd International Conference on Computing and Wireless Communication Systems - ICCWCS’17, 2017, pp. 1–7.
https://doi.org/10.1145/3167486.3167542


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize