Open Access Open Access  Restricted Access Subscription or Fee Access

Comparative Study Between the Hydrogen Fuel Cell and the Alcohols Fuel Cells Based on Electrical, Thermodynamic and Energetic Properties


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecon.v6i2.15323

Abstract


This paper deals with the comparative study between the fuel cell hydrogen based and the fuel cells alcohol based such as (methanol, ethanol, propanol-1 , propanol-2, 1-butanol, (1-propanol, 2-methyl), 2-butanol, (2-propanol, 2-methyl)). Indeed this comparative study is focusing mainly on the main thermodynamic and electrical properties of fuel cell such as the produced electromotive force (EMF), the energy density (ED) and the efficiency. These properties are analyzed based on their behaviors subject to the influence of the basic parameters that are presenting practically the most important impact on the fuel cell performances, such as the temperature, the pressure, the oxygen molar concentration and the fuel boiling point. On the other side, the variation of these parameters is taken respect to a specific range which can fit the practical applications. Finally, this paper presents the simulation results of the behavior of the EMF, the energy density and the efficiency of the hydrogen fuel cell and the alcohols fuel cells function of the variation of the aforementioned parameters such as the temperature, the pressure and the oxygen molar concentration separately, where the main aim is to evaluate their influences on the studied fuel cells.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


PEMFC; Thermodynamic; Electro Oxidation; Performance; Fuels; Alcohols

Full Text:

PDF


References


K. Jiao, M. Ni, Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC), Int.J. Energy Res (2017) 1–5.
http://dx.doi.org/10.1002/er.3798

D. El-Shatter T. F., Eskander M. N., El-Hagry M. T., Energy ow and management of a hybrid wind/PV/fuel cell generation system. Energy Conversion and Management, 47, No. 9-10 (2006) 1264-1280.
http://dx.doi.org/10.1016/j.enconman.2005.06.022

Z. Hu, J. Li, L. Xu, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles, Energy Convers. Manage. 129 (2016) 108-121.
http://dx.doi.org/10.1016/j.enconman.2016.09.082

F. C. Wang, C. Y. Gao, S.C. Li, Impacts of power management on a PEMFC electric vehicle, Int. J. Hydrogen Energy 39(30) (2014) 17336-17346.
http://dx.doi.org/10.1016/j.ijhydene.2014.08.052

Daniel Yergin , The Quest: Energy Security and the Remaking of the Modern World, New York, The Penguin Press, 2011, 804 pp.

Aali, S., Nazarpour, D., Study on Characteristics of Fuel Cell, (2013) International Journal on Engineering Applications (IREA), 1 (3), pp. 214-217.

Ghabara, T., Chouikh, R., Guizani, A., A Parametric Study of PEMFC and SOFC Fuel Cells by Using a CFD Model, (2015) International Review of Mechanical Engineering (IREME), 9 (5), pp. 457-465.
http://dx.doi.org/10.15866/ireme.v9i5.7140

D. Vladikova, Z. Stoynov, Secondary differential impedance analysis – a tool for recognition of CPE behavior, Journal of Electroanalytical Chemistry, Volume 572, Issue 2, 2004, Pages 377-387.
http://dx.doi.org/10.1016/j.jelechem.2004.02.032

P. Thounthong, S. Rael, B. Davat and I. Sadli, A control strategy of fuel cell/battery hybrid power source for electric vehicle applications, 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-7.
http://dx.doi.org/10.1109/pesc.2006.1712067

A. S. Corbeau. Les piles ‘a combustible. Site internet:

http ://www.annso.freesurf.fr/, 2003

H. Wendt and G. Kreysa. G´enie ´electrochimique, chapter 12, pages 359–380. Dunod, 2001.

M. Wang, Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts, Journal of Power Sources, Volume 112, Issue 1, 2002, Pages 307-321.
http://dx.doi.org/10.1016/s0378-7753(02)00447-0

Hirschenhofer J. H., Stauffer D. B., Engleman R. R., Fuel Cells, Handbook, p. 1, U.S. Department of Energy, Morgantown, WV (1994) 54.

C. Cremers, T. Jurzinsky, A. B. Delpeuch, C. Niether, F. Jung, K. Pinkwart and J. Tübke, Electrocatalyst for Direct Alcohol Fuel Cells, ECS Trans. 2015 volume 69, issue 17, 795-807
http://dx.doi.org/10.1149/06917.0795ecst

M. Guarnieri, V. Di Noto, F. Moro, A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices IEEE Transactions on Industrial Electronics Vol 57, Issue 6, June 2010
http://dx.doi.org/10.1109/tie.2009.2027916

S. Fang, Z. Ma, H. Chen, Y. Zhang, S. Sang, X. Liu, An Equivalent Circuit Model of Direct Methanol Fuel Cell for Polarization Analysis, Energy Conversion IEEE Transactions on, vol. 31, no. 1, pp. 187-195, 2016.
http://dx.doi.org/10.1109/tec.2015.2463733

S. Fang, Y. Zhang, Y. Zou, S. Sang, X. Liu, Structural design and analysis of a passive DMFC supplied with concentrated methanol solution, Energy, 2017.Volume 128, 1 June 2017, Pages 50-61
http://dx.doi.org/10.1016/j.energy.2017.03.161

F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics, Volume 145, Issues 1–4, 2001, Pages 47-51.
http://dx.doi.org/10.1016/s0167-2738(01)00912-2

Jay Tawee Pukrushpan. Modeling and Control of Fuel Cell Systems and Fuel Processor Systems. PhD thesis, The University of Michigan, Jan 2003.

El Maniani M., Boulouiz A., Ghanimi A., El Moudane M., Sabbar A., Enthalpies of mixing estimation in the liquid X-In-Sn-Zn (X=Ag, Au) alloys, J. Mater. Environ. Sci. 6 (8) (2015) 2037-2044.

M. Elaguab, T. Allaoui , A. Chaker , A. Benhamou, Effect of fuel thermo physic parameters on electrical and energetic performances of fuel cell. JMES, 2017, 8 (6), pp. 2062-2069.

Fuel Cell Handbook (Sixth Edition). Science Applications International Corporation Under Contract No. DE-AM26 99FT40575 U.S. Department of Energy Office of Fossil Energy, National Energy Technology Laboratory, November 2002.

Stevens P., Cattin F. N., Hammou A., Lamy C., Cassir M., Techniques de l’ingénieur, traité Génie Electrique. (2002) 125.

Friede W., Thèse de doctorat de l’Institut National Polytechnique de Lorraine, Nancy, (2003) 54.

Benchettara A., Benchettara A., Simultaneous electrochemical determination of glucose and ethanol on glassy carbon electrode modified with nickel oxides. J. Mater. Environ. Sci. 7 (11) (2016) 4324-4329.

NIST Chemistry WebBook, SRD 69

M. Cassir, P. Stevens, F. Novel-Cattin, A. Hammou, C. Lamy, Piles à combustible, in: Techniques de l'ingénieur Accumulateurs d'énergie, vol. base documentaire: TIB243DUO, Editions T.I., 2000, pp. d3340.

M. Turco et al., Treatment of Biogas for Feeding High Temperature Fuel Cells, Green Energy and Technology, Springer International Publishing Switzerland, 2016, pp 31-76.

C. Cremers, T. Jurzinsky, A. B. Delpeuch, C. Niether, F. Jung, K. Pinkwart and J. Tübke, Electrocatalyst for Direct Alcohol Fuel Cells, ECS Trans. 2015 volume 69, issue 17, 795-807
http://dx.doi.org/10.1149/06917.0795ecst

M. Guarnieri, F. Moro, A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices, IEEE Transactions on Industrial Electronics, Vol: 57, Issue: 6, June 2010
http://dx.doi.org/10.1109/tie.2009.2027916

S. Fang, Z. Ma, H. Chen, Y. Zhang, S. Sang, X. Liu, An Equivalent Circuit Model of Direct Methanol Fuel Cell for Polarization Analysis, Energy Conversion IEEE Transactions on, vol. 31, no. 1, pp. 187-195, 2016.
http://dx.doi.org/10.1109/tec.2015.2463733

S. Fang, Y. Zhang, Y. Zou, S. Sang, X. Liu, Structural design and analysis of a passive DMFC supplied with concentrated methanol solution, Energy, 2017.Volume 128, 1 June 2017, Pages 50-61.
http://dx.doi.org/10.1016/j.energy.2017.03.161


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize