Recent Advances on Preparation and Characteristics of Oxygen Carrier Particles

Q. Guo(1*), Y. Liu(2), H. Tian(3)

(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Chemical-looping combustion (CLC), characterized by high efficiency, inherent CO2 separation and low NOX emission, is considered as one promising CO2 sequestration technology. The preparation of a suitable oxygen carrier for CLC is a key issue to realize the CLC technique. Recent advances on preparation and characteristics of oxygen carrier particles were reviewed in this paper. Based on a brief summary of CLC, the preparation materials and methods of oxygen carrier were introduced respectively. Finally, the physical properties of the oxygen carrier and reaction characteristics represented by the thermodynamics and kinetics were discussed. The feasibility of some materials used as oxygen carriers was evaluated through thermodynamic analysis. Three gas-solid reaction models were used to explain the reaction kinetics of the gas fuel combustion with oxygen carriers. It is a new trend to synthesis a preferable oxygen carrier using the low-cost ores and industry products instead of metal oxides and directly using the solid fuel in substitution for gas. Further, this review covers a brief introduction to the further application of CLC, especially chemical-looping hydrogen production.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Chemical Looping Combustion; Oxygen Carriers; Fluidized Beds; Preparation; Reaction Kinetics; Hydrogen Production

Full Text:

PDF


References


Cho P., Mattisson T., Lyngfelt A. Comparison of iron-, nickel-, copper-,and manganese-based oxygen carriers for chemical-looping combustion. Fuel 83 (2004)1245-1225.
http://dx.doi.org/10.1016/j.fuel.2003.11.013

Lyngfelt A., Leckner B., Mattisson T. A fluidized-bed combustion process with inherent CO2 separation: application of chemical-looping combustion. Chem. Eng Sci. 56 (2001) 3101-3113.
http://dx.doi.org/10.1016/s0009-2509(01)00007-0

Halmann M., Steinberg M. Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology. Boca Raton, FL: Lewis Publishers, 2000.
http://dx.doi.org/10.1021/ja004811e

Ishida M., Jin H. CO2 recovery in a power plant with chemical looping combustion. Energy Convers Manag. 38 (1997) 187–192.
http://dx.doi.org/10.1016/s0196-8904(96)00267-1

Richter H., Knoche K. Reversibility of combustion processes. ACS Symp Ser, 235(1983) 71-86
http://dx.doi.org/10.1021/bk-1983-0235.ch003

Jin H., Ishida M., A new type of coal gas fueled chemical-looping combustion. Fuel, 83(2004) 2411–2417.
http://dx.doi.org/10.1016/j.fuel.2004.06.033

Alberto Abad, Juan Adánez et al., Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science 62 (2007) 533-549.
http://dx.doi.org/10.1016/j.ces.2006.09.019

Beatriz M. Corbella, Luis F. De diego, Francisco García-Labiano, et.al., Characterization study and five-cycle Tests in a fixed-bed Reactor of Titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environ. Sci. Technol. 39(2005), 5796-5803.
http://dx.doi.org/10.1021/es048015a

Pilar Gayán, Luis F. De Diego, Francisco García-Labiano et al., Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel 87 (2008) 2641–2650.
http://dx.doi.org/10.1016/j.fuel.2008.02.016

Sedor K. E., Hossain M. M., de Lasa H. I., Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC), Chemical Engineering Science 63 (2008), 2994–3007.
http://dx.doi.org/10.1016/j.ces.2008.02.021

Sedor, K. E., Hossain, M. M., de Lasa, H. I., 2008b, Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion, Canadian Journal of Chemical Engineering, doi: 10.1002/cjce20072.
http://dx.doi.org/10.1002/cjce.20072

Zafar Q., Mattisson T., Gevert B., Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4, Energy & Fuels 20 (2006)34–44.
http://dx.doi.org/10.1021/ef0501389

Mattisson T., Johansson M., Lyngfelt,A., The use of NiO as an oxygen carrier in chemical looping combustion, Fuel 85 (2006) 736–747.
http://dx.doi.org/10.1016/j.fuel.2005.07.021

De Diego L. F., Garcia-Labiano F., Gayan P., Cylaya J., Palacios J. M., Adanez, J., Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO–Al2O3 oxygen carrier, Fuel 86(2007) 1036–1045.
http://dx.doi.org/10.1016/j.fuel.2006.10.004

Abad A., Mattisson T., Lyngfelt A., Ryden M., Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier, Fuel 85, (2006) 1174–1185.
http://dx.doi.org/10.1016/j.fuel.2005.11.014

Abad A., Adanez J., Garcia-Labiano F., de Diego L., Gayan P., Celaya J., Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion,. Chemical Engineering Science 62 (2007) 533–549.
http://dx.doi.org/10.1016/j.ces.2006.09.019

Abad A., Mattisson T., Lyngfelt A., Johansson M., The use of iron oxide as oxygen carrier in a chemical-looping reactor, Fuel 86 (2007) 1021–1035.
http://dx.doi.org/10.1016/j.fuel.2006.09.021

Hongguang Jin, Toshihiro Okamoto, Masaru Ishida, Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO, Energy & Fuels 12 (1998) 1272-1277.
http://dx.doi.org/10.1021/ef980080g

Marcus Johansson, Tobias Mattisson, Anders Lyngfelt, Creating a synergy effect by using mixed oxides of Iron- and Nickel oxides in the combustion of methane in a chemical-looping combustion reactor, Energy & Fuels 20 (2006) 2399-2407.
http://dx.doi.org/10.1021/ef060068l

Jin H., Okamoto T., Ishida M., Development of a novel chemical-looping combustion:Synthesis of a solid looping material of NiO/NiAl2O4, Ind Eng Chem Res 38 (1999) 126-132.
http://dx.doi.org/10.1021/ie9803265

Adánez J., Diego L., Carcía-Labiano F, et al, Selection of oxygen carriers for chemical-looping combustion, Energy & Fuels 18(2) (2004) 371-377.
http://dx.doi.org/10.1021/ef0301452

Ishida M., Jin H., Okamoto T., A fundamental study of a new king of medium material for chemical-looping combustion, Energy & Fuels 10(4) (1996) 958-96.
http://dx.doi.org/10.1021/ef950173n

Mattisson T., Johansson M., Lyngfelt A., Multi-cycle reduction and oxidation of different types of iron oxide particles application to chemical-looping combustion, Energy & Fuel 18 (2004) 628–637.
http://dx.doi.org/10.1021/ef0301405

Henrik Leion, Tobias Mattisson, Anders Lyngfelt, Use of ores and industrial products as oxygen carriers in chemical-looping combustion, Energy & Fuels. 2009 In press.
http://dx.doi.org/10.1021/ef8008629

Henrik Leion, Anders Lyngfelt, Marcus Johanssona, et al, The use of ilmenite as an oxygen carrier in chemical-looping combustion, Chemical engineering research and design 86 (2008) 1017–1026.
http://dx.doi.org/10.1016/j.cherd.2008.03.019

Erik Jerndal, Tobias Mattisson, Anders Lyngfelt, Investigation of different NiO/NiAl2O4 particles as oxygen carriers for chemical-looping combustion, Energy & Fuels 23 (2009) 665–676.
http://dx.doi.org/10.1021/ef8006596

Magnus Rydén, Anders Lyngfelt, Tobias Mattisson et. al., Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming: LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4, International journal of greenhouse gas control 2 (2008) 21–36.
http://dx.doi.org/10.1016/s1750-5836(07)00107-7

Y. Zheng, B. W. Wang, K. Song et al, Investigation to a novel oxygen carrier CaSO4 for chemical-looping combustion. Engineering Thermal Physics Journal 27 (2006) 531-533..

Qilei Song, Rui Xiao, Zhongyi Deng, et al., Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor, Energy & Fuels. In press
http://dx.doi.org/10.1021/ef800275a

Hongjing Tian, Qingjie Guo, Investigation into decomposition behavior of CaSO4 in chemical-looping combustion, Energy & Fuels 22 (2008) 3915–3921.
http://dx.doi.org/10.1021/ef800508w

Henrik Leion, Tobias Mattisson, Anders Lyngfelt, Use of petroleum coke as fuel in chemical-looping combustion, Fuel 86(2007)1947-1958.
http://dx.doi.org/10.1016/j.fuel.2006.11.037

Sung Real Son, Kang Seok Go, Sang Done Kim, Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation, Ind. Eng. Chem. Res. 48 (2009) 380–387.
http://dx.doi.org/10.1021/ie800174c

S. Y. Chuang, J. S. Dennis, A. N. Hayhurst, S. A. Scott, Development and performance of Cu-based oxygen carriers for chemical-looping combustion, Combustion and Flame 154 (2008) 109–121.
http://dx.doi.org/10.1016/j.combustflame.2007.10.005

Dueso C. et al., Syngas combustion in a chemical-looping combustion system using an impregnated, Fuel (2009), doi:10.1016/j.fuel.2008.11.026.
http://dx.doi.org/10.1016/j.fuel.2008.11.026

B. M. Corbella, L. De Diego, F. García, The Performance in a Fixed Bed Reactor of Copper-Based Oxides on Titania as Oxygen Carriers for Chemical Looping Combustion of Methane,Energy & Fuels 19 (2005) 433-441.
http://dx.doi.org/10.1021/ef049832z

Ishida M., Yamamoto M., Ohba T., Experimental Results of Chemical-looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200°C, Energy Conversation 43 (2002) 1469-1478.
http://dx.doi.org/10.1016/s0196-8904(02)00029-8

Magnus Rydén, Anders Lyngfelt, Tobias Mattisson, Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-Based oxygen carriers, Energy & Fuels 22 (2008) 2585–2597.
http://dx.doi.org/10.1021/ef800065m

Haibo Zhao, Liming Liu, Baowen Wang, Sol–Gel-derived NiO/NiAl2O4 oxygen carriers for chemical-Looping combustion by coal char, Energy Fuels 22(2) (2008) 898–905.
http://dx.doi.org/10.1021/ef7003859

Linderholm C. et al., Long-term integrity testing of spray-dried particles in 10-kW chemical-looping combustor using natural gas as fuel, Fuel (2009), doi:10.1016/j.fuel.2008.12.018.
http://dx.doi.org/10.1016/j.fuel.2008.12.018

Fang He, Yonggang Wei, Haibin Li, Synthesis gas generation by Chemical-Looping Reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides, Energy & Fuels in press.
http://dx.doi.org/10.1021/ef800922m

Ryu H-.J., Bae D-.H., Jo S-.H., Jin G-.T., Reaction characteristics of Ni and NiO based oxygen carrier particles for chemical-looping combustor, Korean Chemical Engineering Research 42 (2004) 107–114.
http://dx.doi.org/10.1016/b978-008044276-1/50028-3

Peter Erri, Arvind Varma, Diffusional effects in Nickel oxide reduction kinetics, Ind. Eng. Chem. Res. 48 (2009) 4–6.
http://dx.doi.org/10.1021/ie071588m

Song Q. et al., Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed , Energy Conversion Manage (2008), doi:10.1016/j.enconman.2008.05.020.

Carl Linderholm, Alberto Abad, Tobias Mattisson, Anders Lyngfelt, 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier, International journal of greenhouse gas control 2 (2008) 520– 530.
http://dx.doi.org/10.1016/j.ijggc.2008.02.006

Paul Cho, Tobias Mattisson, Anders Lyngfelt, Defluidization conditions for a fluidized bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-Containing oxygen carriers for chemical-looping combustion, Ind. Eng. Chem. Res. 45 (2006) 968-977.
http://dx.doi.org/10.1021/ie050484d

Tobias Mattisson, Anders Lyngfelt, Henrik Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, International journal of greenhouse gas control 3 (2009) 11–19.
http://dx.doi.org/10.1016/j.ijggc.2008.06.002

Mattissonl T. , Zafar Q., Johansson M., et al., Chemical-looping combustion as a new CO2 management technology/ / First regional symposium on carbon management. Dhahran, Saudi-Arabia, CPL, 2006.

Cao Yan, Pan Weiping. Investigation of chemical looping combustion by solid fuels: 1. Process analysis, Energy & Fuels 20 (5) (2006) 1836 - 1844.
http://dx.doi.org/10.1021/ef050228d

Cao Yan, Casenas B., Pan Weiping, Investigation of chemical-looping combustion by solid fuels: 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier , Energy &Fuels 20 (5) (2006) 1845 - 1854.
http://dx.doi.org/10.1021/ef050424k

Shen LaiHong et al., Chemical looping combustion of coal in Interconnected fluidized beds, Sci China Ser E-Tech Sci, 50(2) (2007) 230-240.
http://dx.doi.org/10.1007/s11431-007-0019-z

Yan Cao, Bianca Casenas, Wei-Ping Pan, Investigation of Chemical Looping Combustion by Solid Fuels. 2. Redox Reaction Kinetics and Product Characterization with Coal, Biomass, and Solid Waste as Solid Fuels and CuO as an Oxygen Carrier, Energy & Fuels 20 (2006) 1845-1854.
http://dx.doi.org/10.1021/ef050424k

Laihong Shen, Min Zheng, Jun Xiao, Rui Xiao, A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion, Combustion and Flame 154 (2008) 489–506.
http://dx.doi.org/10.1016/j.combustflame.2008.04.017

Beatriz M. Corbella, Luis F. de Diego, José M. Palacios, Characterization Study and Five-Cycle Tests in a Fixed-Bed Reactor of Titania-Supported Nickel Oxide as Oxygen Carriers for the Chemical-Looping Combustion of Methane, Environ. Sci. Technol. 39 (2005) 5796-5803.
http://dx.doi.org/10.1021/es048015a

Francisco García-Labiano, Luis F. de Diego, Pilar Gayán, Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 1. Fate of Sulfur, Ind. Eng. Chem. Res.48 (5) (2009) 2499–2508.
http://dx.doi.org/10.1021/ie801332z

Juan Adánez, Alberto Abad, Cristina Dueso, Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 2. Fate of Light Hydrocarbons, Ind. Eng. Chem. Res. 48 (5) (2009) 2509–2518.
http://dx.doi.org/10.1021/ie8013346

Levenspiel O., Chemical Reaction Engineering, 3rd ed.; Wiley: New York, 1999.
http://dx.doi.org/10.1002/aic.690190143

Sung Real Son, Sang Done Kim, Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops, Ind. Eng. Chem. Res. 45 (2006) 2689-2696.
http://dx.doi.org/10.1021/ie050919x

Garcia-Labiano F., Adanez J., de Diego L. F., Gayan P., Abad, A., Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carrier for chemical-looping combustion, Energy & Fuel 20 (2006) 26–33.
http://dx.doi.org/10.1021/ef050238e

Hossain M. M., de Lasa H., Reactivity and stability of Co–Ni/Al2O3 oxygen carrier in multicycle chemical-looping combustion, A.I.Ch.E. Journal 53 (7) (2007) 1817–1829.
http://dx.doi.org/10.1002/aic.11188

Liangshih Fan, Fanxing Li, Shwetha Ramkumar, Utilization of chemical looping strategy in coal gasification processes, Particuology 6 (2008) 131–142.
http://dx.doi.org/10.1016/j.partic.2008.03.005

Magnus Rydén, Anders Lyngfelt, Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion, International Journal of Hydrogen Energy 31 (2006) 1271-1283.
http://dx.doi.org/10.1016/j.ijhydene.2005.12.003

Luis F. de Diego, María Ortiz, Francisco García-Labiano et al., Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers, Journal of Power Sources. doi:10.1016/j.jpowsour.2008.11.038.
http://dx.doi.org/10.1016/j.jpowsour.2008.11.038

Laihong Shen, Yang Gao, Jun Xiao, Simulation of hydrogen production from biomass gasification in interconnected fluidized beds, Biomass and Bioenergy. 32 (2008) 120 –127.
http://dx.doi.org/10.1016/j.biombioe.2007.08.002

Paolo Chiesa, Giovanni Lozza, Alberto Malandrino, Matteo Romano, Vincenzo Piccolo, Three-reactors chemical looping process for hydrogen production, International Journal of Hydrogen Energy 33 (2008) 2233 – 2245.
http://dx.doi.org/10.1016/j.ijhydene.2008.02.032

J. P. E. Cleeton, C. D. Bohn, C. R. Müller, J. S. Dennis, S. A. Scott, Clean hydrogen production and electricity from coal viachemical looping: Identifying a suitable operating regime, International Journal of Hydrogen Energy 34 (2009) 1–12.
http://dx.doi.org/10.1016/j.ijhydene.2008.08.069


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize