Fault Analysis of the PEMFC by Using 3D Temperature Fault Sensitive Model for Automotive Applications

Ali Mohammadi(1*), P. Massonnat(2), A. Djerdir(3), D. Bouquain(4), D. Khaburi(5), F. Gao(6), M. Krishnamurthy(7)

(1) Universite de technologie de Belfort-Montbeliard (UTBM), France
(2) Research Institute on Transportation, Energy and Society IRTES-SET, Universite de technologie de Belfort-Montbeliard (UTBM), France
(3) Research Institute on Transportation, Energy and Society IRTES-SET, Universite de technologie de Belfort-Montbeliard (UTBM), France
(4) Research Institute on Transportation, Energy and Society IRTES-SET, Universite de technologie de Belfort-Montbeliard (UTBM), France
(5) Iran University of Science & Technology (IUST), Iran, Islamic Republic of
(6) Research Institute on Transportation, Energy and Society IRTES-SET, Universite de technologie de Belfort-Montbeliard (UTBM), France
(7) ECE, Illinois Institute of Technology, United States
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


In recent years, the fault diagnosis in the Proton Exchange Membrane Fuel Cell (PEMFC) has become a challenging issue in increasing performance, stability and reliability of Fuel Cell Electric Vehicle (FCEV). The main purpose of this paper is the evaluation of fault cells in a stack PEMFC resulted for three dimensional temperature validations. A 3D fault sensitive model is developed. Fault classification using K-Nearest Neighbor (K-NN) method has also been implemented. The Ballard PEMFC has been tested experimentally to check the validity of the proposed models.
Copyright © 2014 Praise Worthy Prize - All rights reserved.


K-Nearest Neighbor (K-NN) method; Polymer Exchange Membrane Fuel Cell; Operating Conditions; Isolating fault; Newton-Raphson Method

Full Text:



A. Khaligh and S. Dusmez, “Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475–3489, Oct. 2012

M. Ehsani,Y. Gao, A. Emadi, “Modern Electric, Hybrid Electric and Fuel Cell Vehicles”, CRC Press ,Taylor and Francis Group, LLC Boca Raton London New York, 2010.

DOE, “Hydrogen, fuel cells and infrastructure technologies program, multi-year research, development and demonstration plan”, U.S Department of Energy, March 2012, available online: www1.eere.energy.gov/hydrogenandfuelcells/mypp/.

A. Khaligh and A. Emadi, “Mixed DCM/CCM pulse adjustment with constant power loads,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 2, pp. 766–782, Apr. 2008.

K. Mahanijah Md and Y. Dingli, “Model-based fault detection for proton exchange membrane fuel cell systems,” Int. J. Eng. Sci. Technol., vol. 3, no. 9, pp. 1–15, 2011.

H.Wang, H.li, X.Z.Yuan, “Pem Fuel Cell Failure Mode Analysis”, CRC Press ,Taylor and Francis Group, LLC Boca Raton London New York, 2012

Yousfi-Steiner N, Moc¸ote´guy P, Candusso D, Hissel D, Hernandez A, Aslanides A. A review on PEM voltage degradation associated with water management: impacts, influent factors and characterization. Journal of Power Sources 2008; 183:260e74.

N. Yousfi-Steiner, P. Moçotéguy, D. Candusso, and D. Hissel, “A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation,” J. Power Sources, vol. 194, no. 1, pp. 130–145, Oct. 2009.V.

Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of process fault detection and diagnosis: Part I: Quantitative model-based methods,” Comput. Chem. Eng., vol. 27, no. 3, pp. 293–311, Mar. 2003.

R. Isermann, “Model-based fault-detection and diagnosis – status and applications,” Annu. Rev. Control, vol. 29, no. 1, pp. 71–85, 2005.

A. Gebregergis, P. Pillay, and R. Rengaswemy, “PEMFC Fault Diagnosis, Modeling, and Mitigation,” in IEEE Industry Applications Society Annual Meeting, 2008. IAS ’08, 2008, pp. 1–8.

S. S. Williamson and A. Emadi, “Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 856–862, May 2005.

J. Kim, I. Lee, Y. Tak, and B. H. Cho, “State-of-health diagnosis based on hamming neural network using output voltage pattern recognition for a PEM fuel cell,” Int. J. Hydrog. Energy, vol. 37, no. 5, pp. 4280–4289, Mar. 2012.

Z. Zheng, R. Petrone, M. C. Péra, D. Hissel, M. Becherif, C. Pianese, N. Yousfi Steiner, and M. Sorrentino, “A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems,” Int. J. Hydrog. Energy.

R. Petrone, Z. Zheng, D. Hissel, M. C. Péra, C. Pianese, M. Sorrentino, M. Becherif, and N. Yousfi-Steiner, “A review on model-based diagnosis methodologies for PEMFCs,” Int. J. Hydrog. Energy, vol. 38, no. 17, pp. 7077–7091, juin 2013.

A. Mohammadi, A. Djerdir, D. Bouquain, B. Bouriot, D. Khaburi “Fault Sensitive Modeling and Diagnosis of PEM Fuel Cell for Automotive Applications”, IEEE Transportation Electrification Conference and Expo (ITEC 2013), Dearborn, USA, 2013.

H.Wang, H.li, X.Z. Yuan, “Pem Fuel Cell Diagnostic Tools”, CRC Press, Taylor and Francis Group, LLC Boca Raton London New York, 2012.

D. Hissel, M. C. Péra, and J. M. Kauffmann, “Diagnosis of automotive fuel cell power generators,” J. Power Sources, vol. 128, no. 2, pp. 239–246, avril 2004.

A. Hernandez, D. Hissel, and R. Outbib, “Modeling and Fault Diagnosis of a Polymer Electrolyte Fuel Cell Using Electrical Equivalent Analysis,” IEEE Trans. Energy Convers. vol. 25, no. 1, pp. 148–160, 2010.

S. Astier, L. Boulon, A. Bouscayrol, Y. Bultel, D. Candusso, S. Caux, S. Chupin, T. Colmart, G. Coquery, B. Davat, A. De Bernardinis, J. Deseure, S. Didierjean, J. Dillet, F. Druart, M. Fadel, G. Fontes, B. François, J. C. Grandidier, F. Harel, M. Hilairet, M. Hiraje, S. Jeme, O. Lottin, L. Madier, G. Maranzana, S. Montemaniov, D. Nguyen, L. Ortéga, R. Outbib, M. . Pera, S. Raël, N. Rétière, D. Riu, S. Sailler, R. Talj, and T. Zhou, “A review of existing modelling methodologies for PEM fuel cell systems,” in FDFC, Nancy, France, 2008.

J. Larminie and A. Dicks, Fuel cell systems explained. J. Wiley, 2003.

F. Gao, B. Blunier, and A. Miraoui, Proton exchange membrane fuel cells modeling. London; Hoboken, NJ: ISTE ; Wiley, 2012

F. Barbir, H. Gorgun, and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” J. Power Sources, vol. 141, no. 1, pp. 96–101, février 2005.

M. Gerard, J.-P. Poirot-Crouvezier, D. Hissel, and M.-C. Pera, “Ripple Current Effects on PEMFC Aging Test by Experimental and Modeling,” J. Fuel Cell Sci. Technol., vol. 8, no. 2.

M. Z. Al-Faiz, A. A. Ali, and A. H. Miry, “A k-nearest neighbor based algorithm for human arm movements recognition using EMG signals,” in 2010 1st International Conference on Energy, Power and Control (EPC-IQ), 2010, pp. 159–167.


  • There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2021 Praise Worthy Prize