Simplified Formulation of Impulse Dynamics: Application to a Moped Crash Test

A. Houidi(1*), L. Maiffredy(2), L. Romdhane(3), A. Dogui(4), M. Fayet(5)

(1) Laboratory of Mechanical Engineering (LGM.), ISSAT Sousse, Tunisia
(2) LaMCoS, INSA Lyon, France
(3) LGM, ENISo Susse, Tunisia
(4) LGM. ENIM, Tunisia
(5) LaMCoS, INSA Lyon, France
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


The objective of this work is to present a new simplified formulation of the impulse dynamics. This formulation will be used to simulate the dynamic behaviour of a system entering into collision and presenting several unilateral contacts. These unilateral contacts can be lost during the collision, which modifies the configuration of the system. The presented formulation has the advantage of coping with the changes in the configuration of the system and yielding a linear continuous model, which can be solved analytically. This formulation will be applied to study the behaviour of a system, made of a rider and its moped, during a collision. To validate the application of this simplified formulation, crash tests will be presented and their results will be discussed.
Copyright © 2015 Praise Worthy Prize - All rights reserved.


Impulse Dynamics; Unilateral Constraint; Reconstruction; Crash Test

Full Text:



Y. A. Khulief, A. A. Shabana, A continuous force model for the impact analysis of flexible multibody systems, Mechanism and Machine Theory, Vol. 22, pp. 213-224, 1987.

G. Gilardi, I. Sharfi, Literature survey of contact dynamics modelingi, Mechanism and Machine Theory, Vol. 37, pp. 1213-1239, 2002.

J. Pérès, Mécanique générale (MASSON, Paris, 1953)

C. Cholet, Chocs de solides rigides. Thèse de doctorat en mathématique de l’université Paris VI, 1998.

M.T. Masson, Mechanics of robotic manipulation ( New-York : MIT press, 2001).

J. Brossard, dynamique: théorie classique du choc in Technique de l’ingénieur, ref. A1 668.

J. J. Moreau, Mécanique classique (Tome II, Masson Paris, 1971).

C. E. Smith, Prediction rebounds using rigid-body dynamics, ASME Journal of applied Mechanics, Vol. 58, pp. 754-758, 1991.

W. J. Stronge, Swerve during three-dimensional impact of rough rigid bodies, ASME Journal of applied Mechanics. Vol. 61, pp. 605-611, 1994.

E. Cataldo, R. Sampaio, A Generalised model for collision between rigid bodies, European congress on computational methods in applied sciences and engineering ECCOMAS, Barcelona, 11-14 Septembre, 2000.

A. Chatterjee, rigid body collisions: some general considerations, new collision laws and some experimental data. PhD Thesis, Cornell University, 1997.

M. B. Rubin, Physical restrictions on the impulse acting during three–dimensional impact of two rigid bodies, ASME Journal of applied Mechanics, Vol. 65, pp. 464-469, 1998.

X. Zhang, L. Vu-quov, Modeling the dependence of the coeffcient of restitution on the impact velocity in elasto-plastic collisions, International Journal of Impact Engineering, Vol. 27 pp. 317-341, 2002.

C. Le Saux, F. Cevaer, R. Motor, Contribution to 3D impact problems: Collisions between two slender steel bars, Comptes Rendus Mécaniques, Vol. 332, pp. 17–22, 2004.

D. Stoianovici, Y. Hurmuzlu, A critical study of the applicability of rigid-body collision theory, ASME Journal of applied Mechanics, Vol. 63, pp. 307-316, 1996.

S. Ahmed, H. M. Lankarani, M.F.O.S. Pereira, Frictional impact analysis in open-loop multibody mechanical systems, ASME Journal of Mechanical Design, Vol. 121, pp. 119-126, 1999.

A. Domenech, Non-smooth modelling of billiard and – superbillard ball – collision, International Journal of Mechanical Sciences, doi: 10.1016/j.ijmecsci.2007.11.2006.

W. Schiehlen, Seifried, Three approaches for elastodynamic contact in multibody system, Multibody System Dynamics, Vol.12, pp. 1–16, 2004.

A.P. Ivanov, On multiple impact, Journal of Applied Mathematics and Mechanics, Vol.59, n°6, pp. 887 – 902, 1995.

I. Han, B.J. Gilmore, Multi-body impact motion with friction-analysis, simulation and experimental validation, ASME Journal of Mechanical Design, Vol. 115, pp. 412-422, 1993.

J.J. Moreau, Standard inelastic shocks and the dynamics of unilateral constraints. In : G. Del Piero, F. Maceri. Proceedings of the second meeting on unilateral problems in structural analysis RAVELLO, 22-24 Septembre , 1983, Edited by Springer - Verlag - New York, pp. 175-246, 1983.

J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics. In : J.J. Moreau, P. D. Panagiotopoulos. Nonsmooth mechanics and application, Wien: Springer, pp. 3–176, 1988.

M. Fremond, Rigid body collisions, Physics letters A, Vol. 204, pp. 33-41, 1995.

F. Pfeiffer, C. Glocker, Multibody dynamics with unilateral contacts (Wien : John Wiley, 1996).

F. Pfeiffer, Multibody dynamics with unilateral contacts, Journal of applied Mathematical Mechanics, Vol. 65 n°4, pp. 665-670, 2001.

L. S. Wang, W. T. Chou, The analysis of constrained impulsive motion, Journal of Applied Mechanics, Vol.70, pp.583–594, 2003.

F. A. Berg, H. Bürkle, F. Schmidts, Analysis of the Passive Safety of Motorcycles Using accident Investigations and Crash Tests, 16th International Technical Conference on the Enhanced Safety of Vehicles ESV, Windsor, Ontario, Canada, 31 Mai – 4 Juin, 1998. Paper number 98–S10–O–11.

D. Schaper, J. Grandel. Motorcycle Collision with Passenger Cars– Analysis of Impact Mechanism, Kinematics, and effectiveness of Full Face Safety Helmets. Society of Automotive Engineers SAE, 1986. Paper number 850094.

A. Houidi, Nouvelle formulation de la dynamique du choc : Application aux accidents des véhicules à deux roues, Thèse en Génie Mécanique de l’INSA de Lyon N° 2005-ISAL-0053, Juillet 2005.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2020 Praise Worthy Prize