An Artificial Neural Network Model for Predicting Mechanical Properties of CMn (V-Nb-Ti) Pipeline Steel in Industrial Production Conditions


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The mechanical properties of API X60/X70 microalloyed steel were investigated with industrial thermomechanical experiments. The many parameters of processes obtained during production of the plant were systematically changed to optimise the strength and toughness properties. The optimised parameters were used for the production of the API X60/X70 steel. However, it is not easy to determine as to what parameters under which conditions influence the mechanical properties of the material. Therefore, in this study, a generalised regression neural network was developed to predict the mechanical properties as a function of experimental conditions. The predicted values of the yield and tensile strengths using the neural network are found to be in good agreement with the actual values from the experiments.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Microalloyed Steel; Mechanical Properties; Artificial Neural Network; Regression Neural Network

Full Text:

PDF


References


Malcolm Gray J. Technology of microalloyed steel for large diameter pipe. Int J Pres Ves Pip 1974; 2:95–122.
http://dx.doi.org/10.1016/0308-0161(74)90019-2

Sage AM. Effect of rolling schedules on structure and properties of 0.45-percent vanadium weldable steel for x70 pipelines. Met Technol 1981;8:94–102.
http://dx.doi.org/10.1179/030716981803275695

Hart PHM, Mitchell PS. The effect of vanadium on the toughness of welds in structural and pipeline steels. Weld J 1995; 74:S239–48.
http://dx.doi.org/10.1115/omae2013-11502

Irvine KJ, Gladman T, Orr J, Pickerin FB. Controlled rolling of structural steels. J Iron Steel I 1970; 208:717.
http://dx.doi.org/10.1016/s1006-706x(13)60046-1

Matsubar H, Osuka T, Kozasu I, Tsukada K. Investigation of metallurgical factors in production of high-strength steel plate with high toughness by controlled rolling. Trans Iron Steel I Jpn 1972; 12:480.
http://dx.doi.org/10.2355/isijinternational1966.27.315

May MJ, Gladman T, Walker EF. Recent developments in ultra high strength steels and their applications. PhilosTransRoyal Soc, London Series 1976; 282:377.
http://dx.doi.org/10.1098/rsta.1976.0125

Brownrigg A, Boelen R. Yielding behavior of some Mn–Mo–Nb pipeline steels. Met Forum 1981;4:245–52.
http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1291

Shimizu H, Gibbon WM. Evaluating the dynamic toughness properties of pipeline steels. Can Metall Quart 1982; 21:103–9.
http://dx.doi.org/10.1179/cmq.1982.21.1.103

Pluvinage G, Krasowsky AJ, Krassiko VW. Influence of mechanical and metallurgical parameters on dynamic fracture-toughness of 2 pipeline steels. Mem Etud Sci Rev Met 1992;89:137–52.
http://dx.doi.org/10.1016/0013-7944(92)90035-d

Iung T, Difant M, Pineau A. Resistance and toughness of pipeline steels crack-arrest in cleavage fracture.Rev Metall Cahiers Informations Tech 1995; 92:227–39.
http://dx.doi.org/10.1111/j.1460-2695.1994.tb00216.x

Schofiel R, Weiner RT. Simulating HAZ toughness in pipeline steels. Met Constr Br Weld J 1974; 6:45–7.
http://dx.doi.org/10.1115/ipc2010-31280

Croft NH, Deardo AJ, Gray JM. The effects of filler metal composition, heat input and post-weld heat-treatment on the properties of submerged-arc welds in X70 grade linepipe steel. J Met 1982; 35:A64.
http://dx.doi.org/10.2172/1054220

Hulka K, Peters P, Heisterkamp F. Trends in the development of large-diameter pipe steels. Steel Transl 1997; 27:64–70.
http://dx.doi.org/10.1016/b978-0-08-029358-5.50030-6

Hulka K, Heisterkamp F. Development trends in HSLA steels for welded constructions. Mater Sci Forum 1998; 284:343–50.
http://dx.doi.org/10.4028/www.scientific.net/msf.284-286.343

Heisterkamp F, Hulka K. Low-carbon Mn–Ni–Nb steel. 2. Weldability.Met Technol 1984; 11:545–9.
http://dx.doi.org/10.1179/030716984803274558

Mujahid M, Lis AK, Garcia CI, De Ardo AJ. HSLA-100 steels: influence of aging heat treatment on microstructure and properties. J Mater Eng Perform 1998; 7:247–57.
http://dx.doi.org/10.1361/105994998770347981

Zhao MC, Yang K, Shan YY. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater Sci Eng a 2002; 335:14–20.
http://dx.doi.org/10.1016/s0921-5093(01)01904-9

Zhao MC, Yang K, Shan YY. Comparison on strength and toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Mater Lett 2003; 57:1496–500.
http://dx.doi.org/10.1016/s0167-577x(02)01013-3

Zhao MC, Tang B, Shan YY, Yang K. Role of microstructure on sulfide stress cracking of oil and gas pipeline steels. Metal Mater Trans A 2003; 34A:1089–96.
http://dx.doi.org/10.1007/s11661-003-0128-7

DeArdo AJ. New challenges in the Thermomechanical processing of HSLA steels. Mater Sci Forum 2003;426–432:49–56.
http://dx.doi.org/10.4028/www.scientific.net/msf.426-432.49

Bleck W, Frehn A, Kechagias E, Ohlert J, Hulka K. Control of microstructure in TRIP steels by niobium. Mater Sci Forum 2003; 426:43–8.
http://dx.doi.org/10.4028/www.scientific.net/msf.426-432.43

Kneissl AC, Baldinger P. Structure and properties of TM processed HSLA steels. J de Phys 1993; IV 3:77–82.
http://dx.doi.org/10.1051/jp4:1993708

Wang Shyi-Chin, Hsieh Rong-Iuan, Liou Horng-Yih, Yang Jer-Ren. The effects of rolling processes on the microstructure and mechanical properties of ultra low carbon bainitic steels. Mater Sci Eng 1992; 157A:29W–36W.
http://dx.doi.org/10.1016/0921-5093(92)90095-i

M. C¸ H.M. Ertunc¸, M. Yılmaz. An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions. Materials and Design 28 (2007) 488–495
http://dx.doi.org/10.1016/j.matdes.2005.09.001

S. Datta, M.K. Banerjee : Mapping the input–output relationship in HSLA steels through expert neural network, Materials Science and Engineering A 420 (2006) 254–264
http://dx.doi.org/10.1016/j.msea.2006.01.037

N.K. Bose, P. Liang, Neural Network Fundamentals, McGraw-Hill Inc.,1996.
http://dx.doi.org/10.1002/sce.3730260527

S. Datta, J. Sil, M.K. Banerjee, ISIJ Int. 39 (1999) 986–990.
http://dx.doi.org/10.2355/isijinternational.39.986

S. Datta, M.K. Banerjee, ISIJ Int. 44 (2004) 846–851.
http://dx.doi.org/10.2355/isijinternational.44.846

S. Datta, M.K. Banerjee, Scand. J. Metall. 33 (2004) 310–315.
http://dx.doi.org/10.1111/j.1600-0692.2004.00699.x

S. Datta, M.K. Banerjee, ISIJ Int. 45 (2005) 121–126.
http://dx.doi.org/10.2355/isijinternational.45.121

Haque ME, Sudhakar KV. ANN back propagation prediction model for fracture toughness in micro alloy steel. Int J Fatique 2002;24: 1003 – 10.
http://dx.doi.org/10.1016/s0142-1123(01)00207-9

H. K. D. H. Bhadeshia: Neural Networks in Materials Science, ISI International 39:10 (1999), pp. 966-979.
http://dx.doi.org/10.2355/isijinternational.39.966

Bhadeshia HKDH. ISIJ Int 1999: 39: 966.
http://dx.doi.org/10.2355/isijinternational.39.966

Rumelhart DE, Hinton GE,Williams RJ. Nature 1986: 323: 533.
http://dx.doi.org/10.1038/323533a0

Fletcher R, Reeves CM. Comput J 1964: 7: 149.
http://dx.doi.org/10.1093/comjnl/7.2.149

Polak E, Ribiere G. Rev Fr Inform Rech Oper 1969: 16-R1: 35.
http://dx.doi.org/10.1051/m2an/196903r100351

Moller MF. Neural Netw 1989: 2: 357.
http://dx.doi.org/10.1109/tnn.2003.820439

Dennis JE, Schnabel RB. Num methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
http://dx.doi.org/10.1207/s15328023top2002_14

Riedmiller M, Braun H. Proc IEEE Int Conf Neural Netw 1993: 49.
http://dx.doi.org/10.1109/72.248458

Hagan MT, Menhaj M. IEEE Trans Neural Netw 1994: 5: 989.
http://dx.doi.org/10.1109/72.329697

A.Guedri et al: Effect of different rolling schedules on the mechani- cal properties and microstructure of C Mn (V-Nb-Ti) pipeline steel, (I.RE.M.E.), 1, 4 (2007) 397-405.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize