Open Access Open Access  Restricted Access Subscription or Fee Access

On the Influence of Hydrodynamic and Electric Forces on the Film Drainage Between Two Rising Drops in a Liquid/Liquid System

Mostapha Brik(1), Robert Ruscassie(2), Abdellah Saboni(3*)

(1) Université de Pau et des Pays de l’Adour, IUT/GTE, Fédération IPRA, France
(2) Université de Pau et des Pays de l’Adour, SIAME- IPRA, France
(3) Université de Pau et des Pays de l’Adour, IUT/GTE, Fédération IPRA, France
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this paper, the rise of two drops of n-butanol in quiescent water under the influence of buoyancy force with and without the application of electrical attraction force has been examined. The 2D numerical model proposed in this work is based on an Arbitrary-Lagrangian-Eulerian method ALE (moving mesh) for capturing interfaces, coupled with Navier-Stokes equations for the fluid flow, then the resulting system of equations is solved by the finite elements commercial software Comsol Multiphysics 4.2a. The numerical approach has been firstly validated with the existing results for the rise of a single n-butanol drop in water and for the coalescence of two water drops in stagnant polybutene oil under the action of an electric field. Thereafter, the study has been extended to the rise of two n-butanol drops in water under a buoyancy force with and without the electric field. Some focus has been given on the influence of the distance between the drops on their rising velocities and on the film drainage between the two drops. Subsequently, the influence of the applied electrical field strength on the liquid film drainage has been investigated. It has been found out that the application of the electrical field generates an attractive force, which provokes an acceleration of the drainage between the two drops.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Film Drainage; Hydrodynamic and Electric Forces; Rising Drops

Full Text:

PDF


References


S. Hu, R. C. Kintner, The fall of single liquid drops through water, AIChE 1 (1955) 42-48.

F. H. Garner, A. H. P. Skelland, Some factors affecting droplet behaviour in liquid-liquid systems, Chem. Eng. Sci. 4 (1955) 149–158.
https://doi.org/10.1016/0009-2509(55)85017-8

A. J. Klee, R. E. Treybal, Rate of rise or fall of liquid drops, AIChE 2 (1956 ) 444–447.
https://doi.org/10.1002/aic.690020405

G. F. Scheele, B. J. Meister, Drop formation at low velocities in liquid‐liquid systems: Part I. Prediction of drop volume, AIChE 14 (1968) 9–15.
https://doi.org/10.1002/aic.690140105

J. R. Grace, T. Wairegi, T. H. Nguyen, Shapes and Velocities of Single Drops and Bubbles Moving Freely through Immiscible Liquids, Trans. Inst. Chem. Eng. 54 (1976) 167–173.

R. Clift, J.R. Grace, M.E. Weber, Bubbles, drops, and particles (AcademicPress, New York 1978).

B. M. C. Friedman, C. R. and Friedman, Terminal velocity of canola oil, hexane, and gasoline drops rising in water due to buoyancy, Int. J. Sci. Eng. Res. 2 (2011) 1-3.

T. D. Taylor, A. Acrivos, On the deformation and drag of a falling viscous drop at low Reynolds number, J. Fluid Mech. 18 (1964) 466-476.
https://doi.org/10.1017/s0022112064000349

A. S. Brignell, The deformation of a liquid drop at small Reynolds number, Q. J. Mech. Appl. Math. 26 (1973) 99-107.
https://doi.org/10.1093/qjmam/26.1.99

D. W. Moore, The velocity of rise of distorted gas bubbles in a liquid of small viscosity, J. Fluid Mech 23 (1965) 749–766.
https://doi.org/10.1017/s0022112065001660

J. F. Harper, D. W. Moore, The motion of a spherical liquid drop at high Reynolds number, J. Fluid Mech. 32 (1968) 367–391.
https://doi.org/10.1017/s0022112068000789

J. Y. Parlange, Motion of spherical drops at large Reynolds numbers, Acta Mechanica 9 (1970) 323-328.
https://doi.org/10.1007/bf01179829

J. F. Harper, The motion of bubbles and drops through liquids, Adv. Appl. Mech. 12 (1972) 59-129.

D. S. Dandy, L. G. Leal, Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers, J. Fluid Mech. 208 (1989) 161-192.
https://doi.org/10.1017/s0022112089002818

T. Tsukada, H. Mikami, M. Hozawa, N. Imaisi, Theoretical and experimental studies of the deformation of bubbles moving in quiescent Newtonian and non-Newtonian liquids, J. Chem. Eng. Jpn. 23 (1990) 192–198.
https://doi.org/10.1252/jcej.23.192

L. A. Bozzi, J. Q. Feng, T. C. Scott, A. J. Pearlstein, Steady axisymmetric motion of deformable drops falling or rising through a homoviscous fluid in a tube at intermediate Reynolds number, J. Fluid Mech. 336 (1997) 1-32.
https://doi.org/10.1017/s0022112096004132

Z. G. Feng, E. E. Michaelides, Heat and mass transfer coefficients of viscous spheres, Int. J. Heat Mass Trans. 44 (2001) 4445-4454.
https://doi.org/10.1016/s0017-9310(01)00090-4

A. Saboni, S. Alexandrova, Numerical study of the drag on a fluid sphere, AIChE 48 (2002), 2992–2994.
https://doi.org/10.1002/aic.690481225

A. Saboni, S. Alexandrova, M. Mory, Flow around a contaminated fluid sphere, Int. J. of Multiphase Flow 36 (2010) 503-512
https://doi.org/10.1016/j.ijmultiphaseflow.2010.01.009

J. Petera, L. R. Weatherley, Modelling of mass transfer from falling droplets, Chem. Eng. Sci. 56 (2001), 4929-4947.
https://doi.org/10.1016/s0009-2509(01)00142-7

K. B. Deshpande, W.B. Zimmerman, Simulation of interfacial mass transfer by droplet dynamics using the level set method, Chem. Eng. Sci 61 (2006) 6486-6498.
https://doi.org/10.1016/j.ces.2006.06.012

T. Watanabe, K. Ebihara, Numerical simulation of coalescence and breakup of rising droplets, Computer & Fluids 32(2003) 823-834.
https://doi.org/10.1016/s0045-7930(02)00022-1

M. A. Waheed, M. Henschke, A. Pfennig, Simulating sedimentation of liquid drops, Int. J. Numer. Methods Eng. 59 (2004) 1821-1837.
https://doi.org/10.1002/nme.920

W. Dijkhuizen, M. van Sint Annaland, J. A. M. Kuipers, Numerical investigation of closures for interface forces in dispersed flows using a 3D front tracking model, Proceedings of the 4th International Conference on CFD in the Oil and Gas. Trondheim, Norway, June 6-8 (2005).
https://doi.org/10.1016/j.ces.2005.03.048

E. Bertakis, S. Gro, J. Grande, O. Fortmeier, A.Reusken, A.Pfennig, Validated simulation of droplet sedimentation with finite-element and level-set methods, Chem. Eng. Sci. 65 (2010) 2037-2051.
https://doi.org/10.1016/j.ces.2009.11.043

K. Bäumler, M. Wegener, A. R. Paschedag, E.Bänsch, Drop rise velocities and fluid dynamic behavior in standard test systems for liquid/liquid extraction—experimental and numerical investigations, Chem. Eng. Sci. 66 (2011) 426-439.
https://doi.org/10.1016/j.ces.2010.11.009

M. Henschke, Auslegung pulsierter Siebboden Extraktionskolonnen, Habilitation Thesis, RWTH Aachen, 2003.

R. Engberg, E. Y. Kenig, Numerical simulation of rising droplets in liquid–liquid systems: A comparison of continuous and sharp interfacial force models, J. Heat Fluid Flow 50 (2014) 16-26.
https://doi.org/10.1016/j.ijheatfluidflow.2014.05.003

M. Wegener, M. Kraume, A.R. Paschedag, Terminal and transient drop rise velocity of single toluene droplets in water, AIChE 56 (2010) 2–10.
https://doi.org/10.1002/aic.11969

J. S. Eow, M. Ghadiri, Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology, Chem. Eng. J. 85 (2002) 357-368.
https://doi.org/10.1016/s1385-8947(01)00250-9

A. Ervik, S. M. Hellesø, S. T. Munkejord, B. Müller, Electrocoalescence III: staus and summary report from activities, IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, Slovenia, 30 June–3 July (2014).
https://doi.org/10.1109/icdl.2014.6893172

Y. Lin, P. Skjetne, A. Carlson, A phase field model for multiphase electro-hydrodynamic flow, Int. J. Multiphase Flow 45 (2012) 1-11.
https://doi.org/10.1016/j.ijmultiphaseflow.2012.04.002

M. Brik, R. Ruscassie, A. Saboni, Droplet deformation and coalescence under uniform electric field., J. of Chemical Technology and Metallurgy, 51 (2016) 649-659.

J. Raisin, Electrocoalescence in water-in-oil emulsions: toward an efficiencycriterion, PhD Thesis, University of Grenoble 2011.

M. H. Davis, Two charged spherical conductors in a uniform electric field: Forces and field strength, The Quarterly J. of Mechanics and Applied Mathematics 17 (1964) 499–511.
https://doi.org/10.1093/qjmam/17.4.499

P. Atten, Electrocoalescence of water droplets in an insulating liquid, J. Electrostat 30 (1993) 259-270.

K. W. Yu, J. T. K. Wan, Interparticle force in polydisperse electrorheological fluids, Computer Physics Communications 129 (2000) 177–184.
https://doi.org/10.1016/s0010-4655(00)00105-3

Misek, T., Berger, R., Schröter, J., Standard Test Systems for Liquid Extraction, Rugby, UK, 1985.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize