Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen and Carbon Effect on Cu-4%at.Be Alloy Oxidised Surface


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Auger electron spectroscopy (AES) has been used to study Be segregation on Cu-4%at. Be alloy surface. In this work, the surface atomic composition was followed as a function of temperature at the surface, in hydrogen atmosphere.  The activation energy of Be segregation has been experimentally determined. The result is in agreement with the theoretical value. It has been found that in hydrogen atmosphere, the segregation energy of Be decreases and molecular adsorption occurs at the oxidized Cu-Be alloy surface. Hydrogen and oxygen effects are discussed in terms of  formation heats of Be (OH)2, Cu (OH)2, BeH, BeH2 and CuH chemical components in the alloy matrix.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Cu-4%at. Be; segregation energy; Cu (OH) 2; BeH2; BeH; Be (OH)2

Full Text:

PDF


References


W.C. Crone,Compositional variation and precipitate structures of copper-beryllium single crystals grown by the Bridgman technique, Journal of Crystal Growth 218(2000)381-389.

S. Belkhiat, Cinétique de formation du BeO à la surface d’un alliage Cu-Be, Ann. Chim. Sci. Mat, 1997,22, pp.183-188.

José A. Rodriguez, Jae. Y. Kim, Jonathan C. Hanson, Manuel Perez and Anatoly I. Frenkel, Reduction of CuO in H2: In situ time resolved XRD studies, Catalysis Letters 85(2003)247

D. Kolovos-Villianitis, Th. Kammler and J. Kuppers, Iteraction of gaseous H atoms with Cu(100) surfaces: adsorption, absorption, and abstraction, Surf. Sci. 454-456(2000)316.

Michele Lazzeri, Stefano de Gironcoli, Ab initio study of Be(1010) surface dynamical properties, Surf. Sci. 454-456(2000)442.

S. Zalkind, M. Polakand N. Shamir, Adsorption of hydrogen on clean and oxidized beryllium studied by direct recoil spectrometry, Applied Surf. Sci. 115(1997)273.

K.B. Ray, X. Pan and E.W. Plummer, the interaction of H with Be(0001): a photoemission investigation, surf. sci. 285(1993)66.

C. Jardin, S. Rantsordas and D. Robert, spectroscopie d’électrons auger et de pertes d’énergie de l’oxyde BeO ségrégé sur un alliage cuivre au beryllium,J. Microsc. Spectrosc. Electron. 10(1985)539.

D. Tamanek, S. Mukherjee, V. Kumar and K.H. Bennemann, Calculation of chemisorption and absorption induced surface segregation, Surf. Sci. 114(1982)11.

J. Philibert, Diffusion et transport de matière dans les solides, les éditions de physiques France, page 152.

Peter J. Feibelman, Structure of H-covered Be(0001), Phys. rev. B48(1993)11270.

Ian P. Dillon and John D. Head, Closter model study of multiple h adsorption on Be(0001), Surf. Sci. 245(1991)439.

H. Okada, G. Itoh, M. Kanno, Hydrogen segregation in an Al-Li alloy, Scrita Metallurgica et Materialia, Vol.26(1992)69-74.

S. Belkhiat, F. Keraghel, Oxygen and Carbon Effect on the Segregation Energy of Be on Cu-4at.%-Be Alloy Surface, IREPHY Vol.1, August 2007.

F.L. Williams and D. Nason, Binary alloy surface compositions from bulk alloy thermodynamic data, Surface Science 45(1974)377.

F.F. Abraham and C.R. Brundle, Surface Segregation in binary solid solutions: a theoretical and experimental perspective, J. Vac. Sci. Technol. 18(1981)506.

C. Creemers, H. Van Hove and A. Neyens, Low energy ion scattering study of Be and Sn segregation in their alloys With Cu, Application of Surface Science 7(1981)402-418.

Farid F. Abraham, Nan-Hsiung and G.M. Pound, Bond and strain energy effects in surface segregation: an atomic calculation, Surface Science 83(1979)406-422.

M. Guttmann, Equilibrium segregation in ternary solution : a model for temper embrittlement, surface science 53(1975)213.

P.Wynblatt and R.C.Ku, Surface energy and solute strain energy effects in surface segregation, Surface Science 65(1977)511-531.

Handbook of Auger Electron Spectroscopy, L.E. Davis, N.C. Mac Donald, P.W. Palmberg, G.E. Riach and R.E. Weber, 2nd Edition Published by Physical Electronics Industries, Minnesota (1982).

S. Belkhiat, Etude par A.E.S de la segregation du Li et du Be à la surface des alliages Al-Li et Cu-Be, Thèse Doctorat d’état, Université Ferhat Abbas Sétif, 2001.

Fusafumi Nakao, Masahiro Birakawa and Terumasa, quantitative depth profiling analyses of the surface layer in Be-Cu dynodes, J. Vac. Sci. Technol., 16(1979)1017-1019.

F.E. Ruttenberg and T.W. Haas, Surface composition and morphology vs secondary-electron yield of Be-Cu dynodes.

Handbook of Chemistry and Physics, 63rd Edition, 1982-1983, The Chemical Rubler Co, page D56.

S. Belkhiat, F. Keraghel, Lithium segregation on Al-3.49wt%-Li alloy surface oxidised, Romanian Journal of Physics, Vol..51(2006)801-811.

S. Belkhiat, F. Keraghel,Characterisation of Al-3.49wt%-Li Alloy oxidized surface using Auger Electron Spectroscopy, Romanian Journal of Physics, Vol. 52(2007)805-818.

J.Moreau, in l’oxydation des métaux, tome I, by J. Benard , Gauthier- Villars & Cie Editeur Paris 1962 page 275.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize