Open Access Open Access  Restricted Access Subscription or Fee Access

Simulation of Multivariable Fractional Control Applied to Binary Distillation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireche.v9i3.14913

Abstract


Fractional order PI control and multivariable systems applied to the binary distillation model of Wood and Berry (1973) were studied. Genetic algorithms were implemented for controller tuning based on the minimization of ITAE of all loops, considering a set-point change in the top and in the bottom compositions. Simulations considered decentralized controllers, random measurement errors in controlled variables, and the presence of decoupling systems, the latter with the purpose of minimizing interaction between control loops A unique set of parameters for the fractional controller, able of handling different real operating situations, was obtained. The fractional PI controller significantly improved the performance of the multivariable control system when compared to the integer order PI controller. The use of fractional control led to a reduction of the ITAE value by 53.6% for a change of set-point of the bottom composition, when compared to the ITAE value obtained with the integer PI controller. Also in regard to the ITAE value, 58.9% of improvement was achieved when comparing systems with and without the loop decouplers. The fractional controllers were stable with errors of up to 10% of the value of the measured variable.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Control Design; Distillation Column; Fractional Order PI; Genetic Algorithms; Multivariable Systems

Full Text:

PDF


References


L. A. D. Isfer, E. K. Lenzi, G. M. Teixeira, M. K. Lenzi, Fractional control of an industrial furnace, Acta Sci-Technol. 32 (2010) 279-285.
http://dx.doi.org/10.4025/actascitechnol.v32i3.6552

K. J. Astrom, T. Hägglund, The future of PID control, Control Eng. Prac. 9 (2001) 1163-1175.
http://dx.doi.org/10.1016/s0967-0661(01)00062-4

O. Garpinger, T. Hägglund, Software-based optimal PID design with robustness and noise sensitivity constraints, J. Process Contr. 33 (2015) 90-101.
http://dx.doi.org/10.1016/j.jprocont.2015.06.001

C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. 51 (2017) 141-159
http://dx.doi.org/10.1016/j.cnsns.2017.04.001

J. Hristov, Multiple integral-balance method basic idea and an example with mullin's model of thermal grooving, Therm. Sci. 21 (2017) 1555-1560.
http://dx.doi.org/10.2298/tsci170410124h

E.M. Bainy, E.K. Lenzi, M.L. Corazza, M.K. Lenzi, Mathematical modeling of fish burger baking using fractional calculus, Therm. Sci. 21 (2017) 41-50.
http://dx.doi.org/10.2298/tsci160422241b

Y. Luo, Y.Q. Chen, C.Y. Wang, Y.G. Pi, Tuning fractional order proportional integral controllers for fractional order systems, J. Process Contr. 20 (2010) 823-831.
http://dx.doi.org/10.1016/j.jprocont.2010.04.011

T.N.L. Vu, M. Lee, Analytical design of fractional-order proportional-integral controllers for time-delay processes, ISA T. 52 (2013) 583-591.
http://dx.doi.org/10.1016/j.isatra.2013.06.003

T. Liu, W. Zhang, D. Gu, Analytical multiloop PI/PID controller design for two-by-two processes with time delays, Ind. Eng. Chem. Res. 44 (2005) 1832-1841.
http://dx.doi.org/10.1021/ie0493715

D. K. Maghade, B. M. Patre, Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes, ISA T. 51 (2012) 550-558.
http://dx.doi.org/10.1016/j.isatra.2012.02.006

X.L. Luan, Q. Chen, P. Albertos, F. Liu, Stabilizing parametric region of multiloop pid controllers for multivariable systems based on equivalent transfer function, Math. Probl. Eng. (2016) Article Number: 3173289.
http://dx.doi.org/10.1155/2016/3173289

J. Lee, W. Cho, T.F. Edgar, Multiloop PI controller tuning for interacting multivariable processes, Comput. Chem. Eng. 22 (1998) 1711-1723.
http://dx.doi.org/10.1016/s0098-1354(98)00230-0

Q. Wang, T. Lee, Y. Zhang, Multiloop Version of the Modified Ziegler-Nichols Method for Two Input Two Output Processes, Ind. Eng. Chem. Res. 37 (1998) 4725-4733.
http://dx.doi.org/10.1021/ie980313r

M. Chiu, Y. Arkun, A methodology for sequential design of robust decentralized control systems, Automatica. 28 (1992) 997-1001.
http://dx.doi.org/10.1016/0005-1098(92)90153-7

W. L. Luyben, Simple Method for Tuning SISO Controllers in Multivariable Systems, Ind. Eng. Chem. Proc. D. D. 25 (1986) 654-660.
http://dx.doi.org/10.1021/i200034a010

M. J. He, W.J. Cai, B.F. Wu, M. He, Simple decentralized PID controller design method based on dynamic relative interaction analysis, Ind. Eng. Chem. Res. 44 (2005) 8334-8344.
http://dx.doi.org/10.1021/ie050327e

M. Hovd, S. Skogestad, Sequential Design of Decentralized Controllers, Automatica. 30 (1994) 1601-1607.
http://dx.doi.org/10.1016/0005-1098(94)90099-x

S. Shiu, S. Hwang, Sequential Design Method for Multivariable Decoupling and Multiloop PID Controllers, Ind. Eng. Chem. Res. 37 (1988) 107-119.
http://dx.doi.org/10.1021/ie970352n

S. Skogestad, M. Morari, Robust performance of decentralized control systems by independent designs, Automatica. 25 (1989) 119-125.
http://dx.doi.org/10.1016/0005-1098(89)90127-1

H. S. Sáncheza, F. Padula, A. Visioli, R. Vilanova, Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models, ISA T. 66 (2017) 344-361.
http://dx.doi.org/10.1016/j.isatra.2016.09.021

G. R. Meza, J. Sanchis, X. Blasco, J. M. Herrero, Multiobjective evolutionary algorithms for multivariable PI controller design, Expert Syst. Appl. 39 (2012) 7895-7907.
http://dx.doi.org/10.1016/j.eswa.2012.01.111

G. R. Meza, J Sanchis, X. Blasco, R. Z. Freire, Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning, Expert Syst. Appl. 51 (2016) 120-133.
http://dx.doi.org/10.1016/j.eswa.2015.11.028

V. Q. Nguye, S. Arunsawatwong, Fractional Controller Design for a Binary Distillation Column Using the Method of Inequalities, SICE Annual Conference. Tokyo, Japan, August 20-22 (2008).
http://dx.doi.org/10.1109/sice.2008.4654765

W. Silpsrikul, S. Arunsawatwong, S. Design of Fractional PI Controllers for a Binary Distillation Column with Disturbances Restricted in Magnitude and Slope, 8th IFAC World Congress. Milano, Italy, August 28 – September 2 (2011).
http://dx.doi.org/10.3182/20110828-6-it-1002.03078

R. K. Wood, M. W. Berry, Terminal composition control of a binary distillation column, Chem. Eng. Sci. 28 (1973) 1707-1717.
http://dx.doi.org/10.1016/0009-2509(73)80025-9

L. J. Bučanović, M. P. Lazarević, S. N. Batalov, The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process, Hem. Ind. 68 (2014) 519-528.
http://dx.doi.org/10.2298/hemind130717078b

M. Moradi, A genetic-multivariable fractional order PID control to multi-inputmulti-output processes, J. Process Contr. 24 (2014) 336-343.
http://dx.doi.org/10.1016/j.jprocont.2014.02.006

S. Sivananaithaperumal, S. Baskar, Design of multivariable fractional order PID controller using covariance matrix adaptation evolution strategy, Arch. Control Sci. 24 (2014) 235-251.
http://dx.doi.org/10.2478/acsc-2014-0014

D. Pradeepkannan, S. Sathiyamoorthy, Design and modeling of fractional order PI controller for a coupled spherical tank MIMO system, Aust. J. Bas. App. Sci. 9 (2015) 477-485.
http://dx.doi.org/10.1109/icaccct.2014.7019324

N. Nasirpour, S. Balochian, Optimal design of fractional-order PID controllers for multi-input multioutput (variable air volume) air-conditioning system using particle swarm optimization, Intellig. Build. Internat. 2 (2016) 107-119.
http://dx.doi.org/10.1080/17508975.2016.1170659

W. L. Luyben, Distillation Design and Control Using Aspen Simulation (Wiley-AIChE, 2013).
http://dx.doi.org/10.1002/0471785253

H. Huang, J. Jeng, C. Chiang, W. Pan, A direct method for multi-loop PI/PID controller design, J. Process Contr. 13 (2003) 769-786 2003.
http://dx.doi.org/10.1016/s0959-1524(03)00009-x

D. K. Maghade, B.M. Patre, Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA T. 51 (2012) 550-558.
http://dx.doi.org/10.1016/j.isatra.2012.02.006

R. Zhang, Q. Zou, X. Cao, F. Gao, Design of fractional order modeling based extended non-minimal state space MPC for temperature in an industrial electric heating furnace, J. Process Contr. 56 (2017) 13-22.
http://dx.doi.org/10.1016/j.jprocont.2017.05.003

P. Shah, S. Agashe, Review of fractional PID controller, Mechatronics. 38 (2016) 29-41.
http://dx.doi.org/10.1016/j.mechatronics.2016.06.005

M. Caputo, Linear Models Of Dissipation Whose Q Is Almost Frequency Independent-2, Geophys. J. Roy. Astr. Soc. 13 (1967) 529.
http://dx.doi.org/10.1111/j.1365-246x.1967.tb02303.x

I. Podlubny, Fractional-Order Systems and PIλDµ Controllers, IEEE T. Automat. Contr. 44 (1999) 208-214.
http://dx.doi.org/10.1109/9.739144

T.F. Edgar, D.M. Himmelblau, L. Lasdon, Optimization of Chemical Processes (McGraw-Hill, 2001).
http://dx.doi.org/10.1002/aic.690490128

S. Zhou, J. Cao, Y. Chen, Genetic Algorithm-Based Identification of Fractional-Order Systems, Entropy. 15 (2013) 1624-1642.
http://dx.doi.org/10.3390/e15051624

E. M. Gomes, R. R. L. Araujo, M. K. Lenzi, F. R. G. B. Silva, E.K. Lenzi, Parametric Analysis of a Heavy Metal Sorption Isotherm Based on Fractional Calculus, Math. Probl. Eng. (2013) Article Number: 642101.
http://dx.doi.org/10.1155/2013/642101

D. E. Seborg, T. F. Edgar, D. A. Mellichamp, Process Dynamics and Control (John Wiley & Sons, 2003).
http://dx.doi.org/10.1109/acc.2003.1239104

R. G. Rice, D. D. Do, Applied Mathematics and Modeling for Chemical Engineers (John Wiley & Sons, 1995).
http://dx.doi.org/10.1002/cite.330680619

Z. Li, L. Liu, S. Dehghan, y.q. Chen, D. Xue, A review and evaluation of numerical tools for fractional calculus and fractional order controls, Int. J. Control, 90 (2017) 1165-1181.
http://dx.doi.org/10.1080/00207179.2015.1124290

E. H. Bristol, On a new measure of interaction for multivariable process control, IEEE T. Automat. Contr. AC11 (1966) 133.
http://dx.doi.org/10.1109/tac.1966.1098266


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize