Selective Oxidation of CO Over Cu Catalysts Prepared from Hydrotalcite-Like Precursors


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Cu-Mg-Al and Cu-Zn-Al catalysts derived from hydrotalcite-like compounds were prepared with 6 wt% of CuO and evaluated in selective oxidation of CO in hydrogen-rich streams.  The catalysts were characterized by chemical composition, textural analysis, crystalline structure, basicity and reducibility. The reaction was performed in a continuous fixed-bed reactor with temperature range of 125-300 °C under atmospheric pressure. Both catalysts showed an increasing activity and CO2 selectivity until 200 °C, when the CO conversion started to decrease.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Selective Oxidation; Copper; Hydrotalcite; Zinc; Magnesium

Full Text:

PDF


References


C. Song, Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21 st century. Catalysis Today 77 (2002) 17-49.
http://dx.doi.org/10.1016/s0920-5861(02)00231-6

K. Sirichaiprasert, A. Luengnaruemitchai, S., Pongstabodee Selective oxidation of CO to CO2 over Cu–Ce–Fe–O composite-oxide catalyst in hydrogen feed stream. International Journal of Energy 32 (2007) 915-926.
http://dx.doi.org/10.1016/j.ijhydene.2006.10.060

S. Velu, K. Suzuki, T. Osaki, Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl‐layered double hydroxides. Catalysis Letter 62 (1999) 159-167.

P. V. Snytnikov, K. V. Yusenko, S. V. Korenev, Y. V. Shubin, V. A. Sobyanin, Co–Pt Bimetallic Catalysts for the Selective Oxidation of Carbon Monoxide in Hydrogen-Containing Mixtures. Kinetics and Catalysis 48 (2007) 276-281.
http://dx.doi.org/10.1134/s0023158407020127

D. H. Kim and M. S. Lim, Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts. Applied Catalysis A: General 224 (2002) 27-38.
http://dx.doi.org/10.1016/s0926-860x(01)00739-6

J. C. Amphlett, R. F. Mann, B. A. Peppley, On board hydrogen purification for steam reformation/ PEM fuel cell vehicle power plants. Int. J. Hydrogen Energy 21 (1996) 673-678.
http://dx.doi.org/10.1016/0360-3199(95)00131-x

L. J. Pettersson and R. Westerholm, State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs. Int. J. Hydrogen Energy 26 (2001) 243-264.
http://dx.doi.org/10.1016/s0360-3199(00)00073-2

D. L. Trimm and, Z. I. Önsan, Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal. Rev.—Sci. Eng. 43 (2001) 31-84.
http://dx.doi.org/10.1081/cr-100104386

D. H. Kim and J. E. Cha, A CuO-CeO2 Mixed-Oxide Catalyst for CO Clean-Up by Selective Oxidation in Hydrogen-Rich Mixtures. Catalysis Letters 86 (2003) 107-112.

N. F. P. Ribeiro, F. M. T. Mendes, C. A. C. Perez, M. M. V. M. Souza, M. Schmal, Selective CO oxidation with nano gold particles-based over Al2O3 and ZrO2. Applied Catalysis A: General 347 (2008a) 62-71.
http://dx.doi.org/10.1016/j.apcata.2008.05.030

S. Oh, R. M. Sinkevitch, Carbon Monixide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation. Journal of Catalysis 142 (1993) 254-262.
http://dx.doi.org/10.1006/jcat.1993.1205

E. D. Park, D. Lee, H. Lee, Recent progress in selective CO removal in a H2-rich stream. Catalysis Today 139 (2009) 280-290.
http://dx.doi.org/10.1016/j.cattod.2008.06.027

M. Brown, A. Green, G. Cohn, H., Andersen Purifying Hydrogen by Selective Oxidation of Carbon Monoxide. Ind. & Eng. Chem. 452 (1960) 841-844.
http://dx.doi.org/10.1021/ie50610a025

R. J. H. Grisel And B. E. Nieuwenhuys, Selective Oxidation of CO, over Supported Au Catalysts. Journal of Catalysis 199 (2001) 48-59.
http://dx.doi.org/10.1006/jcat.2000.3121

J. T. Kummer, Catalysts For Automobile Emission Control. Progress Energy Combustion Science 6 (1980) 177-199.
http://dx.doi.org/10.1016/0360-1285(80)90006-4

G. Avgouropoulos, T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Applied Catalysis A: General 244 (2003) 155-167.
http://dx.doi.org/10.1016/s0926-860x(02)00558-6

R. Zhou, X. Jiang, J. Mao, X. Zheng, Oxidation of carbon monoxide catalyzed by copper-zirconium composite oxides. Applied Catalysis A: General 162 (1997) 213-222.
http://dx.doi.org/10.1016/s0926-860x(97)00099-9

G. Avgouropoulos, T. Ioannides, H. Matralis, Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Applied Catalysis B: Environmental 56 (2005) 87-93.
http://dx.doi.org/10.1016/j.apcatb.2004.07.017

C. M. Bae, J. B. Ko, D. H. Kim, Selective catalytic oxidation of carbon monoxide with carbon dioxide, water vapor and excess hydrogen on CuO–CeO2 mixed oxide catalysts. Catalysis Communication 6 (2005) 507-511.
http://dx.doi.org/10.1016/j.catcom.2005.04.017

T. Caputo, L. Lisi, R. Pirone, G. Russo, On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Applied Catalysis A: General 348 (2008) 42-53.
http://dx.doi.org/10.1016/j.apcata.2008.06.025

E. L. Crepaldi, P. C. Pavan, J. B. Valim, Comparative Study of the Coprecipitation Methods for the Preparation of Layered Double Hydroxides. Journal of Brazilian Chemical Society 11 (2000) 64-70.
http://dx.doi.org/10.1590/s0103-50532000000100012

F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-Type Anlonlc Clays: Preparation, Properties and Applications. Catalysis Today 11 (1991) 173-301.
http://dx.doi.org/10.1016/0920-5861(91)80068-k

M. M. V. M. Souza, K. A. Ferreira, O. R. M. Neto, N. F. P. Ribeiro, M Schmal. Catalysis Today 133 (2008) 750-754.
http://dx.doi.org/10.1016/j.cattod.2007.12.050

C. Chang, B. Liaw, C. Huang, Y. Chen, Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation. Applied Catalysis 332 (2007) 216-224.
http://dx.doi.org/10.1016/j.apcata.2007.08.021

M. Gabrovska, R. Edreva-Kardjieva, K. Tenchev, P. R. Tzvetkov, A. Spojakina, L. Petrov, Effect of Co-content on the structure and activity of Co–Al hydrotalcite-like materials as catalyst precursors for CO oxidation, Applied Catalysis A: General 399 (2011) 242-251.
http://dx.doi.org/10.1016/j.apcata.2011.04.007

A. Corma, V. Fornes, F. Rey, Hydrotalcites as Base Catalysts: Influence of the Chemical Composition and Synthesis Conditions on the Dehydrogenation of Isopropanol. Journal of Catalysis 148 (1994) 205-212.
http://dx.doi.org/10.1006/jcat.1994.1202

N. F. P. Ribeiro, M. M. V. M. Souza, M. Schmal, Combustion synthesis of copper catalysts for selective CO oxidation. Journal of Power Sources 179 (2008b) 329-334.
http://dx.doi.org/10.1016/j.jpowsour.2007.12.096

W. Liu And M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO2. Engineering Journal 64 (1996) 283-294.
http://dx.doi.org/10.1016/s0923-0467(96)03135-1

P. Courty, D. D Urand, E. Freund, A. Sugier, C1 – C6 Alcohols From Syntkesrs Gas On Copper-Cobalt Catalysts. Journal of Molecular Catalysis 17 (1982) 241-254.
http://dx.doi.org/10.1016/0304-5102(82)85035-9

A. Schutz, P. Biloen, lnterlamellar Chemistry of Hydrotalcites I. Polymerization of Silicate Anions. Journal of Solid State Chemistry 68 (1987) 360-368.
http://dx.doi.org/10.1016/0022-4596(87)90323-9

R. L. Manfro, T. P. M. D. Pires, N. F. P. Ribeiro, M. M. V. M. Souza. Aqueous-phase reforming of glycerol using Ni–Cu catalysts prepared from hydrotalcite-like precursors. Catal. Sci. Technol. 3 (2013) 1278-1287.
http://dx.doi.org/10.1039/c3cy20770f

I. O. Cruz, N. F. P. Ribeiro, D. A. G. Aranda, M. M. V. M. Souza, Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. Catal. Commun. 9 (2008) 2606-2611.
http://dx.doi.org/10.1016/j.catcom.2008.07.031

K. A. Ferreira, N. F. P. Ribeiro, M. M. V. M. Souza, M. Schmal, Structural Transformation of Cu–Mg–Al Mixed Oxide Catalysts Derived from Hydrotalcites During Shift Reaction, Catal. Lett. 132 (2009) 58-63.
http://dx.doi.org/10.1007/s10562-009-0046-4

A. C. C. Rodrigues, C. A. Henriques, J. L. F. Monteiro, Influence of Ni Content on Physico-Chemical Characteristics of Ni, Mg, Al-Hydrotalcite Like Compounds. Mater. Res. 6 (2003) 563-568.
http://dx.doi.org/10.1590/s1516-14392003000400024

A. Aristizábal, N. Barabés, S. Contreras, M. Kolafa, D. Tichit, F. Medina, J. Sueiras, Pt/CuZnAl mixed oxides for the catalytic reduction of nitrates in water: Study of the incidence of the Cu/Zn atomic ratio. Physics Procedia 8 (2010) 44-48.
http://dx.doi.org/10.1016/j.phpro.2010.10.010

K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting Physisorption Data For Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 57 (1985) 603-619.
http://dx.doi.org/10.1002/9783527610044.hetcat0065

M. J. L. Gine´s, N. Amadeo, M. Laborde, C. R. Apesteguıa, Catalytic combustion of propane over mixed oxides derived from Cu-Mg-Al Hydrotalcites. Appl Catal A: General 131 (1995) 283-296.

T. Lopez, P. Bosch, M. Asomoza, R. Gomez, E. Ramos, DTA-TG14 and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties, Mater. Lett. 31 (1997) 311.
http://dx.doi.org/10.1016/s0167-577x(96)00296-0

J. S. Valente, J. Hernandez-Cortez, M. S. Cantu, G. Ferrat, E. Lopez-Salinas, Calcined layered double hydroxides Mg–Me–Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catal. Today 150 (2010) 340.
http://dx.doi.org/10.1016/j.cattod.2009.08.020

Z. Jiang, L. Kong, Z. Chu, L. J. France, T. Xiao, P. P. Edwards, Catalytic combustion of propane over mixed oxides derived from CuxMg3-xAl Hydrotalcites. Fuel 96 (2012) 257-263.
http://dx.doi.org/10.1016/j.fuel.2011.11.027

L. Dussault, J. C. Dupin, E. Dumitriu, A. Auroux, C. Guimon, Microcalorimetry, TPR and XPS studies of acid–base properties of NiCuMgAl mixed oxides using LDHs as precursors. Thermochim. Acta 434 (2005) 93-99.
http://dx.doi.org/10.1016/j.tca.2005.01.012

N. F. P. Ribeiro, C. A. Henriques, M. Schmal, Copper-based catalysts for synthesis of methylamines: the effect of the metal and the role of the support. Catal Lett. 104 (2005) 111-119.
http://dx.doi.org/10.1007/s10562-005-7939-7

F. Kovanda, K. Jiratova, J. Rymes, D. Kolousek, Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl. Clay Sci. 18 (2001) 71-80.
http://dx.doi.org/10.1016/s0169-1317(00)00032-6

L. Chmielarz, P. Ku´Strowski, A. Rafalska-Lasocha, R. Dziembaj, Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta 395 (2003) 225-236.
http://dx.doi.org/10.1016/s0040-6031(02)00214-9

M. Luo, J. Ma, J. Lu, Y. Song, Y. Wang, High-surface area CuO–CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis 246 (2007) 52-59.
http://dx.doi.org/10.1016/j.jcat.2006.11.021

C. R. Jung, A. Kundu, S. W. Namb, H. Lee, Selective oxidation of carbon monoxide over CuO–CeO2 catalyst: Effect of hydrothermal treatment. Applied Catalysis B: Environmental 84 (2008) 426-432.
http://dx.doi.org/10.1016/j.apcatb.2008.04.024

F. Mariño, C. Descorme, D. Duprez, Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Applied Catalysis B: Environmental 54 (2004) 59-66.
http://dx.doi.org/10.1016/j.apcatb.2004.06.008

J. L. Ayastuy, A. Gurbani, M. P. Gonzalez-Marcos, M. A. Gutierrez-Ortiz, Selective CO oxidation in H2 streams on CuO/CexZr1-xO2 catalysts: Correlation between activity and low temperature reducibility. International Journal of Hydrogen Energy 35 (2010) 1232-1244.
http://dx.doi.org/10.1016/j.ijhydene.2011.04.178

D. Martin, D. Duprez, Mobility of Surface Species on Oxides. 1. Isotopic Exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by Noble Metals. Correlation with Oxide Basicity. J. Phys. Chem. 100 (1996) 9429-9438.
http://dx.doi.org/10.1021/jp9531568

C. Chang, B. Liaw, Y. Chen, Y. Chen, Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation. Journal of Molecular Catalysis A: Chemical 300 (2009) 80-88.
http://dx.doi.org/10.1016/j.molcata.2008.10.040


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize