Macro-Molecules as a Source of Levulinic Acid


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The production of levulinic acid from biomass and macromolecules has been reviewed. It was concluded that the most important parameters in the one-pot hydrolysis of biomass, also including dehydration of glucose to hydroxymethylfurfural as well as its further rehydration to formic and levulinic acids, respectively, are the reaction temperature, initial reactant concentration, acid type as well as the raw material applied.
The theoretical maximum yield can hardly be obtained due to formation of humins.Further, the optimum reaction conditions as well as the influence of the catalyst and biomass type are also discussed


Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Biomass; Acid Catalysts; Levulinic Acid

Full Text:

PDF


References


Q. Fang, M. A. Hanna, Experimental studies for levulinic acid production from whole kernel grain sorghum, Biores. Technol. 81 (2002) 187-192.

D.W. Rackemann, W.O.S. Doherty, The conversion of lignocellulosics to levulinic acid, Biofuels, Bioprod. and Bioref. 5 (2011) 198-214.

A.M.R. Galletti, C. Antonetti, V. De Luise, D. Licursi, N. Nassi, Levulinic acid production from waste biomass, BioRes. 7 (2012) 1824-1835.

B. V. Timokhin, V. A. Baransky, G. D. Eliseeva, Levulinic acid in organic synthesis, Rus. Chem. Rev. 68 (1999) 73-84.

B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid, Ind. Eng. Chem. Res. 46 (2007) 1696-1708.

R.H. Leonard, Levulinic acid as a basic chemical raw material, Ind. & Eng. Chem. 48 (1956) 1330-1341.

B.F. McKenzie, Organic Syntheses (John Wiley and Sons, New York, 1929).

L. Yan, N. Yang, H. Pang, B. Liao, Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloric acid, Clean 36 (2) (2008) 158-163.

E. Ramos-Rodriguez, Process for jointly producing furfural and levulinic acid from bagasse and other lignocellulosic materials (US Patent 3,701,789, 1972).

C.P. Sassenratb, Acid catalyst (US Patent 3,258,481, 1966).

A. Thompson, Method of making levulinic acid (US patent 2,206,311, 1940).

R.W. Thomas, H.A. Schuette, Studies on levulinic acid. I. Its preparation from carbohydrates by digestion with hydrocloric acid under pressure, Journal of the Am. Chem. Soc. 53 (1931) 2324-2328.

W.W. Moyer, Preparation of levulinic acid (US patent 2,207,328, 1942).

C.H.G. Hands, F.R. Whitt, The preparation of levulinic acid on a semi-technical scale, Journal of the Soc. of Chem. Ind. 66 (1947) 415-416.

Y. Sumiki, in, Levulinic acid (Japanese patent 176438, 1948).

D.M. Alonso, S.G. Wettstein, M.A. Mellmer, E.I. Gurbuz, J.A. Dumesic, Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass, Energy & Env. Sci. 6 (2013) 76-80.

J.Y. Cha, M.A. Hanna, Levulinic acid production based on extrusion and pressurized batch reaction, Ind. Crops and Prod. 16 (2002) 109-118.

S. Van de Vyver, J. Thomas, J. Geboers, S. Keyzer, M. Smet, W. Dehaen, P.A. Jacobs, B.F. Sels, Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s, Energy & Env. Sci. 4 (2011) 3601-3610.

D.B. Bevilaqua, M.K.D. Rambo, T.M. Rizzetti, A.L. Cardoso, A.F. Martins, Cleaner production: levulinic acid from rice husks, Journal of Clean. Prod. 47 (2013) 96-101.

H. Chen, B. Yu, S. Jin, Production of levulinic acid from steam exploded rice straw via solid superacid, Biores. Technol. 102 (2011) 3568-3570.

C. Chang, P. Cen, X. Ma, Levulinic acid production form wheat straw, Biores. Technol. 98 (2007)1448-1453.

V.S. Minina, A.E. Sarukhanova, K.U. Usmanov, Preparation of fural and levulinic acid by hydrolysis of pressed cotton stems, Fiz. i Khim. Prirodn. i Sintetich. Polimerov, Akad. Nauk Uz. SSR, Inst. Khim. Polimerov, 1962, pp. 87-93.

Z. Yang, H. Kang, Y. Guo, G. Zhuang, Z. Bai, H. Zhang, C. Feng, Y. Dong, Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis, Ind. Crops and Prod. 46 (2013) 205-209.

D.-m. Lai, L. Deng, Q.-x. Guo, Y. Fu, Hydrolysis of biomass by magnetic solid acid, Energy & Env. Sci. 4 (2011) 3552-3557.

N. Ya’aini, N.A.S. Amin, M. Asmadi, Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst, Biores. Technol. 116 (2012) 58-65.

L.J. Carlson, Process for the manufacture of levulinic acid (US patent 3,065,263, 1962).

A.A. Efremov, G.G. Pervyshina, B.N. Kuznetsov, Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4, Chem. Nat. Compd. 33 (1997) 84-88.

J. Thomas, G. Barile, Conversion of cellulose hydrolysis products to fuels and chemical feedstocks, Biomass Wastes 8 (1985) 1461-1494.

S.W. Fitzpatrick, Production of levulinic acid from carbohydrate-containing materials (US Patent 5,608,105, 1997).

Z. Kin, J. Stawecka, Use of waste lignocellulose for the production of levulinic acid, Przeglad Papierniczy 24 (1968) 303-306.

A.A. Efremov, G.G. Pervyshina, B.N. Kuznetsov, Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts, Chem. Nat. Compd. 34 (1998) 182-185.

J. Ahlkvist, S. Ajaikumar, W. Larsson, J-P. Mikkola, One-pot catalytic conversion of Nordic pulp media into green platform chemicals, Applied Catalysis A: General, 454 (2013) 21-29.

W.A. Farone, J.E. Cuzens, Method for the production of levulinic acid and its derivatives (US Patent 6,054,611, 2000).

A. Szabolcs, M. Molnar, G. Dibo, L.T. Mika, Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion, Green Chem.15 (2013) 439-445.

S.G. Wettstein, D.M. Alonso, Y. Chong, J.A. Dumesic, Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems, Energy & Env. Scienc. 5 (2012) 8199-8203.

J. Shen, C.E. Wyman, Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields, AIChE Journal 58 (2012) 236-246.

P. Wang, S. Zhan, H. Yu, Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst, Adv. Mat. Res. 96 (2010) 183-187.

L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang, Y. Gong, Catalytic conversion of cellulose to levulinic acid by metal chlorides, Molecules 15 (2010) 5258-5272.

J. Hegner, K.C. Pereira, B. DeBoef, B.L. Lucht, Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis, Tetrah. Letters 51 (2010) 2356-2358.

J. Potvin, E. Sorlien, J. Hegner, B. DeBoef, B.L. Lucht, Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis, Tetrah. Letters 52 (2011) 5891-5893.

H. Lin, J. Strull, Y. Liu, Z. Karmiol, K. Plank, G. Miller, Z. Guo, L. Yang, High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media, Energy & Env. Sci. 5 (2012) 9773-9777.

R. Weingarten, W.C. Conner, G.W. Huber, Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst, Energy & Env. Sci. 5 (2012) 7559-7574.

H. Ren, Y. Zhou, L. Liu, Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids, Biores. Technol. 129 (2013) 616-619.

B. Girisuta, B. Danon, R. Manurung, L.P.B.M. Janssen, H.J. Heeres, Biores. Technol. 99 (2008) 8367-8375.

M. Kang, S.W. Kim, J.-W. Kim, T.H. Kim, J.S. Kim, Optimization of levulinic acid production from Gelidium amansii, Renew. Energy (2012) 1-7.

K.W. Omari, J.E. Besaw, F.M. Kerton, Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation, Green Chem. 14 (2012) 1480-1487.

B. Girisuta, Levulinic acid from lignocellulosic biomass, Ph.D. dissertation, Dept. Chem. Eng., Univ. of Groningen, Netherlands, 2007.

B. Girisuta, L. Janssen, H. Heeres, A Kinetic study on the conversion of glucose to levulinic acid, Chem. Eng. Research and Design 84 (2006) 339-349.

H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. Mika, I. Horváth, Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes, Top Catal. 48 (2008) 49-54.

Y. Takeuchi, F. Jin, K. Tohji, H. Enomoto, Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances, J. Mater. Sci. 43 (2008) 2472-2475.

W.O.S. Doherty, P. Mousavioun, C.M. Fellows, Value-adding to cellulosic ethanol: Lignin polymers, Ind. Crops and Prod. 33 (2011) 259-276.

R.A. Schraufnagel, H.F. Rase, Levulinic acid from sucrose using acidic ion-exchange resins, Prod. R&D 14 (1975) 40-44.

J. Ahlkvist, S. Ajaikumar, W. Larsson, J. Wärnå, T. Salmi, J.-P. Mikkola, Reaction network upon one-pot catalytic conversion of pulp, Chem. Eng. 32 (2013 649-654).

J. Jow, G.L. Rorrer, M.C. Hawley, D.T.A. Lamport, Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst, Biomass. 14 (1987) 185-194.

K. Lourvanij, G.L. Rorrer, Dehydration of glucose to organic acids in microporous pillared clay catalysts, Appl. Cat. A: General 109 (1994) 147-165.

Y. Bin, C. Hongzhang, Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw, Biores. Technol. 101 (2010) 9114-9119.

V. Chang, M. Holtzapple, Fundamental factors affecting biomass enzymatic reactivity, M. Finkelstein, B. Davison (Eds.) Twenty-First Symposium on Biotechnology for Fuels and Chemicals, Humana Press, 2000, pp. 5-37.

V.M. Ghorpade, M.A. Hanna, Method and apparatus for production of levulinic acid via reactive extrusion (US Patent 5,859,263, 1999).

G. Banerjee, S. Car, T. Liu, D.L. Williams, S.L. Meza, J.D. Walton, D.B. Hodge, Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation, Biotechnol. and Bioeng. 109 (2012) 922-931.

G. Banerjee, S. Car, J.S. Scott-Craig, D.B. Hodge, J.D. Walton, Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose, Biotechnol. Biofuels 4 (2011) 16.

M.F. Zaranyika, M. Madimu, Heterogeneous dilute acid hydrolysis of cellulose: A kinetic model for the hydrolysis of the difficultly accessible portion of cellulose based on donnan's theory of membrane equilibria, J. of Polymer Sci. Part A: Polymer Chem. 27 (1989) 1863-1872.

L. Liu, J. Sun, C. Cai, S. Wang, H. Pei, J. Zhang, Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation, Biores. Technol. 100 (2009) 5865-5871.

I.T. Horvath, H. Mehdi, V. Fabos, L. Boda, L.T. Mika, Gamma-valerolactone - a sustainable liquid for energy and carbon-based chemicals, Green Chem. 10 (2008) 238-242.

J.-P. Lange, J.Z. Vestering, R.J. Haan, Towards 'bio-based' nylon: conversion of gamma-valerolactone to methyl pentenoate under catalytic distillation conditions, Chem. Comm. (2007) 3488-3490.

M. Chalid, H.J. Heeres, A.A. Broekhuis, Ring-opening of γ-valerolactone with amino compounds, J. of Applied Polymer Sci. 123 (2012) 3556-3564.

J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels, Science 327 (2010) 1110-1114.

J.C. Serrano-Ruiz, D.J. Braden, R.M. West, J.A. Dumesic, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Appl. Cat. B: Env. 100 (2010) 184-189.

S.K.R. Patil, C.R.F. Lund, Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural, Energy & Fuels 25 (2011) 4745-4755.

J.J. Panek, P.K. Wawrzyniak, Z. Latajka, J. Lundell, Interaction energy decomposition analysis for formic acid complexes with argon and krypton atoms, Chem. Phys. Letters 417 (2006) 100-104.

V.G. Devulapelli, H.-S. Weng, Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor, Cat. Comm. 10 (2009) 1638-1642.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize