Analytical Solution of Liquid Diffusion into a Medium Under Instantaneous Load - A Problem with a Specification of Mass


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Analytical solution of a diffusion problem with a specification of mass considering liquid penetration into a semi-infinite medium is developed. The basic approach involves an integral method defining a finite depth of penetration of the diffusant which transforms the problem with non-local condition into a simple problem with time-dependent boundary condition


Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Diffusion; Specification of Mass; Integral Method; Fractional Time Semi-Derivatives

Full Text:

PDF


References


G.A.Babushkin, Diffusion from thin layer into two semi-infinitely large bodies with different characteristics, Journal of Engineering Thermophysics, 47(1984) 267-270.
http://dx.doi.org/10.1007/bf00869699

Chr. Andersson, Chr. Fellers, Evaluation of the stress-strain properties in the thickness direction particularly for thin and strong papers, Nordic Pulp and Paper Research Journal, 27 (2012) 287-294.
http://dx.doi.org/10.3183/npprj-2012-27-02-p287-294

Ph.Hass, F.K. Wittel, M. Mendoza, H.J. Herrmann, P. Niemz, Adhesive penetration in beech wood: experiments, Wood Sci Technol. 46 (2012), 1-3, pp.243–256.
http://dx.doi.org/10.1007/s00226-011-0410-6

Y. Zhou, W.F.Gale, T.H. North, Modelling of transient liquid phase bonding, International Materials Reviews, 40 (1995)181-196.
http://dx.doi.org/10.1179/imr.1995.40.5.181

T.C. Illingworth, I.O. Golosnoy, V. Gergely, T.W. Clyne, Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes, Journal of Materials Science 40 (2005) 2505 – 2511.
http://dx.doi.org/10.1007/s10853-005-1983-y

S.J. Marshall, S.C. Bayne, R. Baier, A.P. Tomsia, G.W. Grayson, A review of adhesion science, Dental Materials , 26 (2010) e11–e16.
http://dx.doi.org/10.1016/j.dental.2010.02.005

A. Albaladejo, J. Montero, R. Gomez de Diego, A. Lopez-Valverde, Effect of adhesive application prior to bracket bonding with flowable composites , Angle Orthodontist, 81 (2011) 716-720.
http://dx.doi.org/10.2319/062310-344.1

M. Mour, D. Das, T. Winkler, E. Hoenig, G.Mielke, M. Michael, M.M.Morlock, A.F.Schilling, Advances in Porous Biomaterials for Dental and Orthopaedic Applications, Materials (2010) 2947-2974.
http://dx.doi.org/10.3390/ma3052947

Y.Zhou, Analytical modeling of isothermal solidification during transient liquid phase (TLP) bonding, Journal of Material Science Letters, 20 (2001) 841-844.

T.C. Illingworth, I.O. Golosnoy, T.W. Clyne, Modelling of transient liquid phase bonding in binary systems-A new parametric study, Materials Science and Engineering, A 445–446 (2007) 493–500.
http://dx.doi.org/10.1016/j.msea.2006.09.090

M. Akram, M.A. Pasha, A numerical scheme for the parabolic equation subject to mass specification, International Journal of Information and Systems Sciences, 2 (2006) 326-335.

M.Dehghan, On the numerical solution of the diffusion equation with a nonlocal boundary conditions, Mathematical Problems in Engineering, (2003)81-92.
http://dx.doi.org/10.1155/s1024123x03111015

M. Dehghan, The one-dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 (2007) 661–675.
http://dx.doi.org/10.1016/j.chaos.2005.11.010

B. Soltanalizadeh, Numerical analysis of the one-dimensional heat equation subject to a boundary integral specification, Optics Communications 284 (2011) 2109–2112.
http://dx.doi.org/10.1016/j.optcom.2010.12.074

K.B.Oldham, J. Spanier, The Fractional calculus, Academic Press, New York, 1974.

B.Tuck, Some explicit solutions to non-linear diffusion equation, J.Appl. Phys.D: Appl. Phys., 9 (1976) 1559-1569.
http://dx.doi.org/10.1088/0022-3727/9/11/005

S.M.Pineda, G.Diaz, C.F.M.Coimbra, Approximation of Transient 1D Conduction in a Finite Domain Using Parametric Fractional Derivatives, Journal of Heat Transfer,133 (2011) pp. 071301-1 - 071301-6.
http://dx.doi.org/10.1115/1.4003544

J. Hristov, The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and Benchmark Exercises, Thermal Science, 13(2009) 27-48.
http://dx.doi.org/10.2298/tsci0902027h

J. Hristov, Short-Distance Integral-Balance Solution to a Strong Subdiffusion Equation: A Weak Power-Law Profile, (2010) International Review of Chemical Engineering (IRECHE), 2 (5), pp. 555-563.

M.N.Ozisik, Heat Conduction, 2nd ed., John Wiley, New York, 1993.

J.Hristov, The Heat-Balance Integral: 2. A Parabolic profile with a variable exponent: the concept and numerical experiments, Comptes Rendues Mechanique, 340 (2012) 493-500.
http://dx.doi.org/10.1016/j.crme.2012.03.002


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize