BSCF 5582 and LSCF 6428 Mixed Conducting Membranes for Syngas Production


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The oxygen permeation performance of three mixed ionic-electronic conducting membranes was investigated. Ba0.5Sr0.5Co0.8Fe0.2O3-( (BSCF 5582) membrane was chosen due to its reported high oxygen permeation flux, electronic conductivity and good chemical stability. They were fabricated using powders synthesised using both sol-gel and solid-state methods. A commercial La0.6Sr0.4Co0.2Fe0.8O3-( (LSCF 6428) membrane, fabricated with a powder synthesised using combustion spray pyrolysis, was also used for comparative studies. X-ray diffraction, scanning electron microscopy and energy dispersive analysis X-ray emission were used to characterise the powders and membranes. Oxygen permeation fluxes through the membranes were measured using pure helium on one side of the reactor and air on the other side in the temperature range 650 ºC to 850 ºC. The oxygen permeation fluxes are compared to target fluxes available in the literature. Furthermore, difficulties arising from imperfect sealing of the BSCF 5582 and LSCF 6428 membranes in the reactor are discussed
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Perovskite; BSCF 5582 and LSCF 6428; Mixed Conducting Membranes; Oxygen Permeation; Syngas Production

Full Text:

PDF


References


M. Anderson, Y. S. Lin, Carbon dioxide separation and dry reforming of methane for synthesis of syngas by a dual-phase membrane reactor, AIChE Journal 59 (6) (2013) 2207-2218.
http://dx.doi.org/10.1002/aic.14103

D. J.Wilhelm, D. R. Simbeck, A. D. Karp, R. L. Dickenson, Syngas production for gas-to-liquids applications: technologies, issues and outlook, Fuel Process Technol 71 (2001) 139-148.
http://dx.doi.org/10.1016/s0378-3820(01)00140-0

A. Thursfield, I. S. Metcalfe, The use of dense mixed ionic and electronic conducting membranes for chemical production, J Mater Chem 14 (2004) 2475-2485.
http://dx.doi.org/10.1039/b405676k

H. Wang, Y. Cong, W. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactor, Catal Today 82 (2003) 157-166.
http://dx.doi.org/10.1016/s0920-5861(03)00228-1

L. Tan, X. Gu, L. Yang, W. Jin, L. Zhang, N. Xu, Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes, J Membrane Sci 212 (2003) 157-165.
http://dx.doi.org/10.1016/s0376-7388(02)00494-5

L. Roses, G. Manzolini, S. Campanari, E. De Wit, M. Walter, Techno-economic Assessment of Membrane Reactor Technologies for Pure Hydrogen Production for Fuel Cell Vehicle Fleets, Energy&Fuel, Article ASAP dx.doi.org/10.1021/ef301960e (2013).
http://dx.doi.org/10.1021/ef301960e

Y. Zeng, S. Tamhankar, N. Ramprasad, F. Fitch, D. Acharya, R. Wolf, A novel cyclic process for synthesis gas production, Chem Eng Sci 58 (2003) 577-582.
http://dx.doi.org/10.1016/s0009-2509(02)00582-1

K. Kendall, C. M. Finnerty, G. Saunders, J. T Chung, Effects of dilution on methane entering an SOFC anode, J Power Sources 106 (2002) 323-327.
http://dx.doi.org/10.1016/s0378-7753(01)01066-7

K. Zhang, Y. L. Yang, D. Ponnusamy, A. J. Jacobson, K. Salama, Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3−δ, J Mater Sci 34 (1999) 1367-1372.

P. M. Geffroy, J. M. Bassat , A. Vivet, S. Fourcade, T. Chartier, P. N. Del Gallo Richet, Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(1−x)SrxFe(1−y)GayO3−δ perovskite membranes, J Membrane Sci 354 (2010) 6-13.
http://dx.doi.org/10.1016/j.memsci.2010.03.001

H. Wang, Y. Cong, W. Yang, Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane, J Membrane Sci 210 (2002) 259-271.
http://dx.doi.org/10.1016/s0376-7388(02)00361-7

Y. Teraoka, H. M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chem Lett 14 (1985) 1743-1746.
http://dx.doi.org/10.1246/cl.1985.1743

Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-y FeyO3−δ, Mat Res Bull 23 (1988) 51-58.
http://dx.doi.org/10.1016/0025-5408(88)90224-3

R. J. Chater, S. Carter, J. A. Kilner, B. C. H. Steele, Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics 53-56 (1992) 859-867.
http://dx.doi.org/10.1016/0167-2738(92)90266-r

U. Balachandran, J. T. Dusek, R. L. Mieville, R. B. Poeppel, M. S. Kleefisch, S. Pei, T. P. Kobylinski, C. A. Udovich, A. C. Bose, Dense ceramic membranes for partial oxidation of methane to syngas, Appl Catal, A 133 (1995) 19-29.
http://dx.doi.org/10.1016/0926-860x(95)00159-x

W. Jin, S. Li, P. Huang, N. Xu, J. Shi, Y. S. Lin, Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas, J Membrane Sci 166 (2000) 13-22.
http://dx.doi.org/10.1016/s0376-7388(99)00245-8

S. Pei, M. S. Kleefisch, T. P. Kobylinski, J. Faber, C. A. Udovich, V. Zhang-McCoy, B. Dabrowski, U. Balachandran, R. L. Mieville, R. B. Poeppel, Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal Lett 30 (1994) 201-212.
http://dx.doi.org/10.1007/bf00813686

B. Ma, U. Balachandran, Oxygen nonstoichiometry in mixed-conducting SrFeCo0.5Ox, Solid State Ionics 100 (1997) 53-62.
http://dx.doi.org/10.1016/s0167-2738(97)00342-1

Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane, J Membrane Sci 172 (2000) 177-188.

A. Vivet, P. M. Geffroy, V. Coudert, J. Fouletier, N. Richet, T. Chartier, Influence of glass and gold sealants materials on oxygen permeation performances in La0.8Sr0.2Fe0.7Ga0.3O3−δ perovskite membranes, J Membrane Sci (2011) 366, 132-138.
http://dx.doi.org/10.1016/j.memsci.2010.09.048

X. Qi, F. T. Akin, Y. S. Lin, Ceramic–glass composite high temperature seals for dense ionic-conducting ceramic membranes, J Membrane Sci 193(2001) 185-193.
http://dx.doi.org/10.1016/s0376-7388(01)00488-4

R. Bredesen, J. Sogge, A technical and economic assessment of membrane reactors for hydrogen and syngas production, SINTEF report S96017, 1996 in: H. J. M. Bouwmeester, Catal Today 82 (2003) 141-150.

Z. Shao, G. Xiong, H. Dong, W. Yang, L. Lin, Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas, Sep Purif Technol 25 (2001) 97-116.
http://dx.doi.org/10.1016/s1383-5866(01)00095-8

Z. Shao, H. Dong, G. Xiong, Y. Cong, W. Yang, Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion, J Membrane Sci 183 (2001) 181-192.
http://dx.doi.org/10.1016/s0376-7388(00)00591-3

H. Dong, Z. Shao, G. Xiong, J. Tong, S. Sheng, W. Yang, Investigation on POM reaction in a new perovskite membrane reactor, Catal Today 67 (2001) 3-13.
http://dx.doi.org/10.1016/s0920-5861(01)00277-2

A. J. Burggraaf, K. Keizer, in: R. R., Bhave, Inorganic membranes: synthesis, characteristics and applications (Van Nostrand Reinhold, 1991).
http://dx.doi.org/10.1007/978-94-011-6547-1_2

S. Liu, X. Tan, K. Li, R. Hughes, Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes, Ceram Int 28 (2002) 327-335.
http://dx.doi.org/10.1016/s0272-8842(01)00098-0

0.6) powder by sol–gel processing, Solid State Sci 4 (2002) 125-133.( x (M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, Preparation and characterization of La1–xSrxMnO3+δ (0

http://dx.doi.org/10.1016/s1293-2558(01)01208-0

0.6) powder by sol–gel processing, Solid State Sci 4 (2002) 125-133.£ x £M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, Preparation and characterization of La1–xSrxMnO3+δ (0

J. A. Lane, S. J. Benson, D. Waller, J. A. Kilner, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3−δ, Solid State Ionics 121 (1999) 201-208.

S. Li, H. Qi, N. Xu, J. Shi, Tubular dense perovskite type membranes. Preparation, sealing, and oxygen permeation properties, Ind Eng Chem Res 38 (1999) 5028-5033.
http://dx.doi.org/10.1021/ie990446s

S. Diethelm, J. Van Herle, Oxygen transport through dense La0.6Sr0.4Fe0.8Co0.2O3-δ perovskite-type permeation membranes, J Eur Cera. Soc 24 (2004) 1319-1323.

L. C. L. Santos, C. Moraes, R. Hughes, Characterization of hollow fibre membranes for oxygen permeation and parcial oxidation reactions, BJPG 5(1) (2011) 045-054.
http://dx.doi.org/10.5419/bjpg2011-0006

X. Tan, Z. Wang, H. Liu, S. Liu, Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membranes by surface modifications, J Membrane Sci 324 (2008) 128–135.
http://dx.doi.org/10.1016/j.memsci.2008.07.008


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize