Enhanced Production of a Bacterial Surfactant on Statistical Screening of Operational Parameters


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Biosurfactants have gained attention because they exhibit some advantages such as biodegradability, low toxicity, ecological acceptability and ability to be produced from renewable and cheaper substrates. However, the high cost of production is the limiting factor for widespread industrial applications. Thus, optimization of operational parameters for biosurfactant production by P. cepacia CCT6659 grown in a low-cost medium formulated with industrial wastes was carried out using response-surface methodology. The application of a central composite rotatable design (CCRD) led to the identification of agitation speed, time and inoculum size as significant variables affecting the fermentation process. The optimal levels of the aforementioned variables were 250 rpm agitation speed, 60h of cultivation time and 1.5% inoculum size. The experimental verifications substantiated the model predictions by showing a maximum relative surface tension reduction of 27 mN/m, which was found to be equivalent to about 8.0 g/l isolated biosurfactant as estimated gravimetrically, thereby resulting in an improved production
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Biosurfactant; Optimization; Pseudomonas; Oil; Response Surface Methodology; Surface Tension

Full Text:

PDF


References


A. Perfumo, I. M. Banat, R. Marchant, I. Vezzulli, Thermally enhanced approaches for bioremediation of hydrocarbon-contamined soils. Chemosphere 66 (2007) 179-184.
http://dx.doi.org/10.1016/j.chemosphere.2006.05.006

G. Bognolo, Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf A. 152 (1998) 41–52.
http://dx.doi.org/10.1016/s0927-7757(98)00684-0

N. G. R. Karanth, P. G. Deo, N. K. Veenading, Microbial production of biosurfactants and their importance. Current Science On Line 77 (1999) 116-126.

M. Pacwa-Plociniczak, G. A. Plaza, Z. Piotrowska-Seget, S. S. Cameotra, Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12 (2011) 633-654.
http://dx.doi.org/10.3390/ijms12010633

F. C. Bicca, L. C. Fleck, M. A. Z. Ayub, Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev. Microbiol 30 (1999) 231–236.
http://dx.doi.org/10.1590/s0001-37141999000300008

R. S. Makkar, S. S. Cameotra, Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc. 74 (1997) 887–9.
http://dx.doi.org/10.1007/s11746-997-0233-7

D. Kitamoto, K. Toma, M. Hato, Glycolipid-based nanomaterials. In: Nalwa HS, editor. Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology, American Science Publishers 1 (2005) 239–71.

S. Lang, Biological amphiphiles (microbial surfactants), Curr Opin Colloid Interface 7 (2002) 12–20.
http://dx.doi.org/10.1016/s1359-0294(02)00007-9

S. S. Cameotra, R. S. Makkar, Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biotechnol 50 (1998) 520–529.
http://dx.doi.org/10.1007/s002530051329

S. Mukherjee, P. Das, R. Sen, Towards commercial production of microbial surfactants, Trends Biotechnol 24 (2006) 509–515.
http://dx.doi.org/10.1016/j.tibtech.2006.09.005

M. Abouseoud, R. Maachi, A. Amrane, S. Boudergua, A. Nabi, Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens, Desalination 223 (2008) 143–151.
http://dx.doi.org/10.1016/j.desal.2007.01.198

R. J. Strobel, G. R. Sullivan, In: A. L. Demain., J.E. Davies (Eds.), Experimental design for improvement of fermentations, Manual of Industrial Microbiology and Biotechnology, ASM Press, Washington D.C. (1999) 80-93.

A. I. Khuri, J. A. Cornell, Response Surfaces: Designs and Analyses, Dekker: New York, NY, USA (1987).
http://dx.doi.org/10.1002/qre.4680060115

D. C. Montgomery, Design and analysis of experiments. Singapore, John Wiley & Sons (1996) 720.

G. E. P. Box, N. R. Drapper, Response Surfaces, Mixtures, and Ridge Analyses, Wiley: New York, NY, USA 2 (2007).

S. G. V. A. O. Costa, M. Nitschke, R. Haddad, M. N. Eberlin, J. Contiero, Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochemistry 21 (2005) 1593-1600.
http://dx.doi.org/10.1016/j.procbio.2005.07.002

B. Barros-Neto, I. S. Scarminio, R. E. Bruns, Design and Optimization of Experiments, State University of Campinas (1995).

G. E. P. Box, J. Wetz, University of Wisconsin Technical Report, Madison 9 (1973).
http://dx.doi.org/10.2172/4573664

R. K. Sen, Response surface optimization of the critical media components for the production of surfactin, J. Chem. Technol. Biotechnol. 68 (1997) 263–270.
http://dx.doi.org/10.1002/(sici)1097-4660(199703)68:3%3C263::aid-jctb631%3E3.0.co;2-8

P. Jacques, C. Hbid, J. Destain, H. Razafindralambo, M. Paquot, E. Pauw, P. Thonart, Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design, Appl. Biochem. Biotechnol 77–79 (1999) 223–2330.
http://dx.doi.org/10.1385/abab:77:1-3:223

Y. H. Wei, C. C. Lai, J. S. Chang, Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332, Process. Biochem. 42 (2007) 40–45.
http://dx.doi.org/10.1016/j.procbio.2006.07.025

S. N. R. L. Silva, C. B. B. Farias, R. D. Rufino, J. M. Luna, L. A. Sarubbo, Glycerol as subtrate for the production of biosurfactant by pseudomonas aeruginosas UCP 0992. Colloids And Surfaces B: Biointerfaces 79 (2010) 174-183.
http://dx.doi.org/10.1016/j.colsurfb.2010.03.050

F. J. S. Oliveira, L. Vazquez, N. P. Campos, F.P. França, Biosurfactant production by Pseudomonas aeruginosa FR using palm oil, Applied Biochemistry and Biotechnology 6 (2006) 727-737.
http://dx.doi.org/10.1385/abab:131:1:727

F. J. S. Oliveira, L. Vazquez, N. P. Campos, F. P. França, Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochemistry 44 (2009) 383-389.
http://dx.doi.org/10.1016/j.procbio.2008.11.014

P. Darvishi, , S. Ayatollahi, D. Mowla, A. Niazi, Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids and Surfaces B: Biointerfaces 84 (2011) 292–300.
http://dx.doi.org/10.1016/j.colsurfb.2011.01.011

C. D. Cunha, M. do Rosário, A. S. Rosado, S. G. F. Leite, Serratia sp. SVGG 16: a promising biosurfactant producer isolated from tropical soil during growth with ethanol-blended gasoline. Process Biochemistry 39 (2004) 2277-2282.
http://dx.doi.org/10.1016/j.procbio.2003.11.027

R. Sen, T. Swaminathan, Response surface modelling and optimization to elucidate and analyse the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal 21 (2004) 141-148.
http://dx.doi.org/10.1016/j.bej.2004.06.006


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize