Current Status and Prospects of Biodiesel Production from Brassica Species


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Nowadays, there are three kinds of Brassica species which can be used as biodiesel raw material. The most used Brassica species for producing biodiesel is Brassica Napus (known as Rapeseed), but special weather conditions are required for its cultivation, which are very difficult to obtain in arid zones (like Spain or Italy). In order to solve this problem, Brassica Carinata and Brassica juncea oils (Ethiopian and Indian mustard) can be used. Both Brassica Carinata and Brassica Juncea have glucosinate in their composition, and this substance acts as a natural biofungicide. Therefore, Brassica Carinata and Brassica Juncea can resist extreme temperatures and conditions, and its cultivation in arid areas would be successful. Also, the main problems in biodiesel commercialization are its high price, production costs and the “fuel vs food” controversy. Therefore, the use of new alternative raw materials, such as Brassica Carinata and Juncea, could mitigate this situation
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Brassica; Napus; Carinata; Juncea; Rapeseed; Transesterification; Methanolysis; Ethanolysis; Biodiesel

Full Text:

PDF


References


A. West. Process Simulation and catalyst development for biodiesel production. University of British Columbia (2006)

G.Vicente, M. Martínez, J. Aracil. Kinetics of Brassica Carinata Oil Methanolysis, Energy and Fuels, (2006) 20, 1722-1726.
http://dx.doi.org/10.1021/ef060047r

S. Hoekman, A. Broch, C. Robbins. Review of biodiesel composition, properties and specifications. Renewable and sustainable Energy Reviews, 2011
http://dx.doi.org/10.1016/j.rser.2011.07.143

G.Knothe. “designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy fuels, (2008), 22, 1358-1364
http://dx.doi.org/10.1021/ef700639e

T. Issariyakul, T. Kullkarni,M.G. Dalai. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process Technology, (2007), 88, 429-436
http://dx.doi.org/10.1016/j.fuproc.2006.04.007

D. Nimvecic, R. Puntigam, M. Worgetter, R. Grapes. Preparation of rapeseed oil esters of lower aliphatic alcohols. J.Am.Chem. Soc. (2000), 77, 275-280
http://dx.doi.org/10.1007/s11746-000-0045-1

A. De Haro-Bailón, M.E. Cartea, P. Velasco. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Photochemistry, (2008) 69, 403-410
http://dx.doi.org/10.1016/j.phytochem.2007.08.014

J.A. Kirkegaard, P.A. Gardner, J.E. Angus E. Koetz (1994) Effect on Brassica break crops on growth and yield of wheat. Australian Journal of Agricultural Research 45: 529-545
http://dx.doi.org/10.1071/ar9940529

J.A. Kirkegaard, M. Sarwar, P.T.W. Wong, A. Mead. Biofumigation by brassicas reduces take-all infection. Michalk, D. L. and Pratley, J. E. 465-468. 1998. Charles Sturt University, Wagga Wagga, Charles Sturt University. Agronomy - Growing a Greener Future. Australian Agronomy Conference.

A.Ghasemi, A. Golparvar. Evaluating Agro-Climatologically variables to identify suitable areas for rapeseed in different dates of sowing by GIS approach. American Journal of Agricultural and Biological Sciences, (2008), 3(4), 656-660.
http://dx.doi.org/10.3844/ajabssp.2008.656.660

M. Torterolo, G. Ovando, A. De Haro-Bailón. Ensayo comparativo de tres especies del género Brassica con potencial para la producción de biocombustibles en Córdoba, Argentina. Avances en Energías Renovables y Medio Ambiente, (2009), 13, ISSN 0329-5189.

C. Peterson, D. Auld, R. Korus. Winter rape oil fuel for diesel engines: Recovery and utilization. JAOCS, (1983), 60, 1579-1587.
http://dx.doi.org/10.1007/bf02666589

A.Hanna, F. Ma. Biodiesel Production: a review. Bioresource Technology, (1999), 70, 1-15.
http://dx.doi.org/10.1016/s0960-8524(99)00025-5

Y.C.Dennis and A. Leung. A review on biodiesel production using catalyzed transesterification Applied Energy 87, 2010, 1083–1095.
http://dx.doi.org/10.1016/j.apenergy.2009.10.006

G. Vicente, M. Martínez, J. Aracil. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, (2004), 92 (3), 297.
http://dx.doi.org/10.1016/j.biortech.2003.08.014

A. Hossain and A. Boyce Biodiesel Production from waste sunflower cooking oil as an environmental recycling process and renewable energy. Bulgarian Journal of Agricultural Science, 15 (4). 2004. 312-317.

S. Hossain , A. Boyce S. Chandran et al. Biodiesel production from waste soybean oil biomass as renewable energy and environmental recycled process. African Journal of Biotechnology. 9 (27), 2010, 4233-4240

G. Corro., N. Tellez, A.M Ayala et al. Two-step biodiesel production from Jatropha curcas crude oil using SiO2•HF solid catalyst for FFA esterification step. Fuel, Vol.89, 2010
http://dx.doi.org/10.1016/j.fuel.2010.04.023

S. Liu, T. McDonald and Y. Wang Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating. Biotechnology Advances,28, (4) 2010,. 500-518,
http://dx.doi.org/10.1016/j.fuel.2010.03.011

B.K. Highina, I.M. Bugaje and B. Umar Biodiesel production from Jatropha caucus oil in a batch reactor using zinc oxide as catalyst. Journal of Petroleum Technology and Alternative Fuels, 2(9), 2011, 146-149.

N. Arun, M. Sampat, R.A. Prasaanth et al. Experimental Studies of base catalyzed transesterification of karanja oil. Journal of Energy and Environment, .2, (2), 2011, 351-356.

J.M.Marchetti , V.U. Miguel and A.F. Errazu Possible methods for biodiesel production,” Renewable and Sustainable Energy Reviews, 11, 2007, 1300–1311,
http://dx.doi.org/10.1016/j.rser.2005.08.006

D. Leung and Y. Guo Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology 87, 2006, 883–890.
http://dx.doi.org/10.1016/j.fuproc.2006.06.003

R. Guzatto, T.L. de Martini and .D. Samios The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil Fuel Processing Technology 92 2011, 2083–2088
http://dx.doi.org/10.1016/j.fuproc.2011.06.013

G. Vicente ,M. Martínez and J. Aracil J. Optimisation of integrated biodiesel production. Part II: A study of the material balance Bioresource Technology 98 (2007) 1754–1761
http://dx.doi.org/10.1016/j.biortech.2006.07.023

O. Aldo, A. K. Temu, P. Ogwok and J. W. Ntalikwa, “Physico-Chemical Properties of Biodiesel from Jatropha and Castor Oils,” International Journal of Renewable Energy Research, 2, (1) 2012, 47-52.
http://dx.doi.org/10.4028/www.scientific.net/jera.3.62

S. Zhenga., M. Katesb , D.D. Mc Lean et al. Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy, 30, 2006. 267–27.

G. Vicente, A. Coteron, M. Martínez, J. Aracil. Application of the factorial design of experiments and respose surface methodology to optimize biodiesel production. Ind. Crops. Production, (1998), 8, 29-35.
http://dx.doi.org/10.1016/s0926-6690(97)10003-6

T.F. Dossin, M.F. Reyniers., G.B. Marin Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl. Catal. B 61, 2006, 35–45.
http://dx.doi.org/10.1016/j.apcatb.2006.04.008

S. Gryglewicz, Alkaline earth metal compounds as alcoholysis catalysts for ester oils synthesis Appl. Catal. A 192, 2000, 23–28.
http://dx.doi.org/10.1016/s0926-860x(99)00337-3

J. Jitputti, B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P.Jenvanitpanjakul, Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts Chem. Eng. J. 116 (2006) 61–66.
http://dx.doi.org/10.1016/j.cej.2005.09.025

W. Xie, H. Peng , L. Chen Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A 300, 2006, 67–74.
http://dx.doi.org/10.1016/j.apcata.2005.10.048

T. Oku, M. Nonoguchi, T. Moriguchi, T.A. Akatsuka et al.Transesterification of vegetable oil with subcritical methanol using heterogeneous transition metal oxide catalysts RSC Advances, 2012, 2(23), 8619-8622
http://dx.doi.org/10.1039/c2ra21666c

H. Moriyasu, K. Koshi, M. Kouzu, et al. Preparation of CaO catalyst from calcined limestone by mechanical grinding for biodiesel production. Journal of the Japan Institute of Energy, 91(6), 2012, 495-502
http://dx.doi.org/10.3775/jie.91.495

G. Paterson, I. Titipong , A. Dalai et al. Ion-exchange resins as catalysts in transesterification of triolein Catalysis Today, Ahead of Print
http://dx.doi.org/10.1016/j.cattod.2012.10.013

J. Ding, B. He , J. Li et al. Heat-activated zirconium sulfate as acid heterogeneous catalyst for biodiesel production. Journal of Biobased Materials and Bioenergy 6(2), 2001 , 142-147.
http://dx.doi.org/10.1166/jbmb.2012.1198

H. Lee, Taufiq-YapY. H.;M.Z. Hussein, R. Yunus R. et al. Transesterification of jatropha oil with methanol over Mg-Zn mixed metal oxide catalysts. Energy , 49, 2013, 12-18.
http://dx.doi.org/10.1016/j.energy.2012.09.053

S. Hu,Y. Wang. and H. Han Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production Biomass and bioenergy 35, 2011, 3627-3635
http://dx.doi.org/10.1016/j.biombioe.2011.05.009

M.G. Devanesan, T. Viruthagiri and N. Sugumar Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. African Journal of Biotechnology, Vol. 6 (21),2007, 2497-2501.

O. Stamenkovic, A. Velickovic, V. Veljovic. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, (2011), 90, 3141-3155.
http://dx.doi.org/10.1016/j.fuel.2011.06.049

M. Bloch, L. Bounay, D. Casanave. Fatty Acid Esters in Europe. Market Trends and Technological Persperctives. Oil & Gas Science and Technology, (2008), 63, 405-417.
http://dx.doi.org/10.2516/ogst:2008034

A. Bouaid, M. Martínez, J. Aracil. Pilot Plant studies of biodiesel production using Brassica Carinata as raw material. Catalysis Today, (2005), 106, 193-196.
http://dx.doi.org/10.1016/j.cattod.2005.07.163

R. Bray. Biodiesel Production. (SRI Consulting 2004).

L. Bournay, D. Casanave, B. Delfort, G. Hillion, J. Chodorge. Catalysis Today. (2005), 106, 190
http://dx.doi.org/10.1016/j.cattod.2005.07.181

R. Stern, G. Hillion, J. Rouxel,, US Patent 5,1999, 908-946

E. Freund, D. Casanave, J. Duplan. Diesel fuels from biomass. Pure Applied Chemistry, (2007), 79, 2071-2081.
http://dx.doi.org/10.1351/pac200779112071

K. Georgogianni, A. Katsoulidis, M. Kontonimas. Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts. Bioresource Technology, (1999), 249-253.
http://dx.doi.org/10.1016/j.fuproc.2008.12.004

S. Gryglewicz. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology, (1999), 70, 249-253.
http://dx.doi.org/10.1016/s0960-8524(99)00042-5

C. Mazzochia, G. Modica, R. Nannicini, A. Kaddouri. R. Chim, (2004), 7, 601-605.
http://dx.doi.org/10.1016/j.crci.2003.12.004

E. Leclercq, A. Finiels, C. Moreau, J. American Oil Chem. Soci, (2006),78, 1161-1165.
http://dx.doi.org/10.1007/s11746-001-0406-9

P. Morin, B. Hamad, G. Sapaly, M. Carneiro, P. Pries de Oliveira, W. González. Tranesterification of rapeseed oil with etanol. Catalysis with homogeneous Keggin heteropolyacids. Applied Cat. A. Gen., (2007), 330, 69-76.
http://dx.doi.org/10.1016/j.apcata.2007.07.011

D. De Oliveira, M. Di Luccio, C. Faccio, C. Rosa, J. Bender, N. Lipkie. Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl. Biochem. Biotech, (2004), 771-80, 113-116.
http://dx.doi.org/10.1007/978-1-59259-837-3_62

S. Saka, D. Kusdiana. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, (2001), 80, 225-231.
http://dx.doi.org/10.1016/s0016-2361(00)00083-1

G. Vicente, M. Martínez, J. Aracil. Optimization of Brassica Carinata Oil Methanolysis for Biodiesel Production. JAOCS, (2005) 82, 899-904.
http://dx.doi.org/10.1007/s11746-005-1162-6

A. Bouaid, M. Martínez, J. Aracil. Production of biodiesel from bioethanol and Brassica Carinata Oil: Oxidation stability study. Bioresource Technology, (2009), 100, 2234-2239.
http://dx.doi.org/10.1016/j.biortech.2008.10.045

G. Jham, B. Moser, S. Shah. Wild Brazilian Mustard (Brassica Juncea L.) Seed Oil Methyl Esters as Biodiesel Fuel. American Oil Chemistry Society, (2009), 86, 917-926.
http://dx.doi.org/10.1007/s11746-009-1431-2

F. Anwar, U. Rashid. Production if biodiesel through optimized alkaline-catalyzed tranesterification of rapeseed oil Fuel 87(2008) 265-27.
http://dx.doi.org/10.1016/j.fuel.2007.05.003

Roadupa 2007

P. Thoenes. Biofuels and Comodity Markets- Palm Oil Focus. FAO. (Commodities and Trade Division, 2006)

K. Komers, F. Skopal, R. Stloukal. Kinetics and mechanism of the KOH-catalyzed methanolysis of rapeseed oil for biodiesel production. Europen Journal Lipid Science Technology, (2002), 104, 728-737.
http://dx.doi.org/10.1002/1438-9312(200211)104:11%3C728::aid-ejlt728%3E3.0.co;2-j

M. Shahidul Islam, C. Bundy Kinetics of Rapeseed Oil Methanolysis in presence of KOH Catalyst –Studied with Gas Chromatography International Journal of Science and Technology ( 2012), 10, 2224-3577

M. Cardone, M. Mazzoncini, S. Menini, V. Rocco, A. Senatore, S. Vitolo. Brassica Carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy, (2003), 25, 623-636.
http://dx.doi.org/10.1016/s0961-9534(03)00058-8

M.A.Wilkes, , I. Takei, R.A. Caldwell,.R.M. Trethowan, The effect of genotype and environment on biodiesel quality prepared from Indian mustard (Brassica juncea) grown in Australia Industrial Crops and Products (2013), 48, 124-132
http://dx.doi.org/10.1016/j.indcrop.2013.04.016

M. Serrano A. Bouaid, ,M. Martínez, J. Aracil : Oxidation Stability of biodiesel from different feedstocks: Influence of commercial additives and purification step. Fuel 113 (2013) 50–58
http://dx.doi.org/10.1016/j.fuel.2013.05.078

T. Kivevele,, Z. Huan. Effects of Antioxidants on the Cetane numer, Viscosity, Oxidation Stability and Thermal Properties of Biodiesel Produced from Nonedible oils. Energy Technology (2013), 1(9), 537-543
http://dx.doi.org/10.1002/ente.201300072

A. Mangrich, P. Ferrari, B.; C. Yamamoto,V.F. Ferreira, A. Additives to extend oxidative stability of biodiesel Abstracts of Papers, 245th ACS National Meeting & Exposition, New Orleans, LA, United States, April 7-11, 2013 (2013), ENVR-304

Z. Yang, B. P. Hollebone, Z. Wang, C. Yang, Landriault M. Factors affecting oxidation stability of commercially available biodiesel products Fuel Processing Technology (2013), 106, 366-375.
http://dx.doi.org/10.1016/j.fuproc.2012.09.001

A.S.Silitonga, H.H Masjuki, T.M. Mahlia,, H. Ong,, W.T. Chong,, M.H.Boosroh Overview properties of biodiesel diesel blends from edible and non-edible feedstocks Renewable & Sustainable Energy Reviews (2013), 22, 346-360
http://dx.doi.org/10.1016/j.rser.2013.01.055

P. Saxena, S. Jawale; M. H.Joshipura A review on Prediction of Properties of biodiesel and Blends of Biodiesel Procedia Engineering (2013), 51, 395-402.
http://dx.doi.org/10.1016/j.proeng.2013.01.055

A. E. Atabani,, T. M. I Mahlia,, H. H Masjuki, I. A. Badruddin; H.W. Yussof; W. T Chong,. K.T Lee A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending 58 (2013) 296-304.
http://dx.doi.org/10.1016/j.energy.2013.05.040

http://www.rationallink.org/biodiesel.htm

http://www.eurobserv-er.org/downloads.asp


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize