Open Access Open Access  Restricted Access Subscription or Fee Access

Performance Evaluation of Photo-Fenton and Fenton Processses for Dairy Effluent Treatment


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireche.v5i4.6930

Abstract


This study aimed to evaluate the efficiency of Photo-Fenton and Fenton processes in reducing organic matter of dairy effluent. An Orthogonal Array L9 Taguchi was used to determine optimal conditions of acidity media, temperature, Fenton concentration and UV radiation intensity. Reaction time was set up to 60 min. Optimized parameters were: pH 3.0, temperature, Fenton reagent concentration and UV radiation at the highest level. The Dissolved Organic Carbon percentage reduction (DOC) was 91 %. An effective degradation study was carried out, in which, the reduction percentage was found to be less than the most efficient DOC removal. A cost/benefit evaluation of the AOP process employed on the in natura dairy effluent treatment showed that the reagent consumption the main cost of the process. The highest efficiency experiment for the dairy effluent of this study had operational costs lower than US$ 0.50 to Photo-Fenton and Fenton processes, respectively.
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Dairy Effluent; Photo-Fenton; Taguchi Method; Economic Viability; Efficient Organic Degradation; Cost/Benefit Ratio

Full Text:

PDF


References


B. Sarkar, P. P. Chakrabarti, A.Vijaykumar, V. Kale, Wastewater treatment in dairy industries—possibility of reuse, Desalination 195 (2006), 141–152.
http://dx.doi.org/10.1016/j.desal.2005.11.015

K. Baskaran, L. M. Palmowski, B. M. Watson, Wastewater reuse and treatment options for the dairy industry, Water Sci. Technol. Water Supply 3 (2003) 85–91.

Y. Laor, A. Jacek, Cal. L. Kozlel, Ravid, J. Air &Waste Manage. Assoc., 58 (2008) 1187-1197.

C.H. Comninellis, Teorías y aplicaciones para el control de la contaminación. (2010) p.18, Querétaro, Qro.

B. Demirel, O. Yenigun, T. T. Onay, Anaerobic treatment of dairy wastewaters. Process Biochem, 40 (2005) 2583–2595.
http://dx.doi.org/10.1016/j.procbio.2004.12.015

B. Balannec, M.Vourch, M. Rabiller-Baudry, B. Chaufer, Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration, Sep Purif Technol, 42 (2005) 195–200.
http://dx.doi.org/10.1016/j.seppur.2004.07.013

J. M. Chimenos, A. I. Fernandez, A. Hernandez, L. Haurie, F. Espiell, C. Ayora, Optimization of phosphate removal in anodizing aluminum wastewater, Water Res, 40 (2006) 137–143.
http://dx.doi.org/10.1016/j.watres.2005.10.033

S. Irdemez, N. Demircioglu, Y. Sevki, Z. Bingul, The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes Sep Purif Technol, 52 (2006) 218–223.
http://dx.doi.org/10.1016/j.seppur.2006.04.008

A. K. Golder, A. N. Samanta, S. Ray, Removal of phosphate from aqueous solutions using calcined metal hydroxide sludge wastewater generated from electrocoagulation. Sep Purif Technol, 52 (2006) 102–109.
http://dx.doi.org/10.1016/j.seppur.2006.03.027

A. Hamdani, M. Mountadar, O. Assohei, Comparative study of the efficacy of three coagulants in treating dairy factory waste water Int J Dairy Technol, 58 (2005) 83–88.
http://dx.doi.org/10.1111/j.1471-0307.2005.00198.x

A. Haridas, S. Suresh, K. R. Chitra, V. B. Manilal, The buoyant filter bioreactor: a high rate anaerobic reactor for complex wastewater-process dynamic with dairy effluent, Water Res, 39 (2005) 993–1004.
http://dx.doi.org/10.1016/j.watres.2004.12.013

J. L. Rico, H. Garcίa, C. Rico, I. Tejero, Characterisation of solid and liquid fractions of dairy manure with regard to their component distribution and methane production Bioresour Technol, 98 (2007) 971–979.
http://dx.doi.org/10.1016/j.biortech.2006.04.032

C.B. Chidambara Raj, H. Li Quen, Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique, Chemical Engineering Science, 60 (19) (2005) 5305-5311.
http://dx.doi.org/10.1016/j.ces.2005.03.065

A. Rey, M. Faraldos, J. A. Casas, J. A. Zazo, A. Bahamonde, J. Rodryguez, J. Appl. Catal. B: Environ. (2008).

G. Lamas Samanamud, C. C. A. Loures, A.L. Souza, et al., Heterogeneous Photocatalytic Degradation of Dairy Wastewater Using Immobilized ZnO, ISRN Chemical Engineering, (2012) Article ID 275371, 8 pages doi:10.5402/2012/275371
http://dx.doi.org/10.5402/2012/275371

J. Pignatello, J. Environ.Sci.Technol. 26 (1992) 944.
http://dx.doi.org/10.1021/es00029a012

S. Parsons, Advanced oxidation processos for water treatment. 2nd ed. (United Kingdon 2005).

J. R. Banu, S. Anadan, S. Kaliappan, I. T. Yeom, Treatment of dairy wastewater using anerobic and solar photocatalytic methods. Solar Energy, 82 (9) (2008) 812-819.
http://dx.doi.org/10.1016/j.solener.2008.02.015

H. Kusic, N. Koprivanac, L. Srsan, J. Photochem. Photobio. A: Chem., 181 (2007) 195.

M. T. M. Pendergast and E. M. V. Hoek A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4 (2011) 1946.
http://dx.doi.org/10.1039/c0ee00541j

C. H. Langford, J. H. Carey, Can. J. Chem., 43 (1975) 2430.

G. Ruppert, R. Bauer, Chemosphere., 28 (8) (1994) 1447.
http://dx.doi.org/10.1016/0045-6535(94)90239-9

A. Goi, M. Trapido, Chemosphere., 46 (2002) 913.
http://dx.doi.org/10.1016/s0045-6535(01)00203-x

E. Chamarro, A. Marco, S. Esplugas, Water Res., 35 (4) (2001)1047.

W. Tang, S. Tassos, Water Res.31 (5) (1997), 1117.

T. Y. Wang, C. Y. Huang, European J. Operational Res. (2007) 1052.

G. Taguchi, System of Experimental Design, vols. 1 and 2Unipub-Kraus/ASI (New York/Dearborn, MI 1988).

G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes Unipub-Kraus/ASI (New York/Dearborn, MI 1987).

A.M.F.M. Guedes, L. M.P. Madeira, R.A.R. Boaventura, C.A.V Costa, Water Res. 37 (2003) 3061.
http://dx.doi.org/10.1016/s0043-1354(03)00178-7

M. W. Weiser, K. B. Fong, Am. Ceram. Soc. Bull., 73 (1994) 83

L. S. Lima, H.J. Izário Filho, F.J.M. Chaves, Rev. Analytica. 25 (2006) 52.

APHA–AWWA. Standard Methods for the Examination of Water and Wasterwater. 21st ed. (New York: American Public Health Association 2005)

B. G. Kwon, D. S. Lee, N. Kang, J. Yoon, Water Res. 33 (9) (1999) 2118.
http://dx.doi.org/10.1016/s0043-1354(98)00428-x

Y. W. Kang, Water Res.34 (10) (2000) 2786.
http://dx.doi.org/10.1016/s0043-1354(99)00388-7

P. M. Ndegwa, L. Wang, V. K. Vaddella, Proc. Biochem. 42 (9) (2007) 1272.
http://dx.doi.org/10.1016/j.procbio.2007.06.001

CETESB, Variáveis de Qualidade das Águas (2010). Available in: http://www.cetesb.sp.gov.br/Agua /rios/variaveis.asp#dbo

F. J. Baumann, Dichromate reflux chemical oxygen demand. Proposed method for chloride correction in highly saline wastes. Anal. Chem., 46 (9) (1974) 1336–1338.
http://dx.doi.org/10.1021/ac60345a039

M. D. Porter, B. Vaidya, S. W. Watson, S. J. Coldiron, Reduction of chloride ion interference in chemical oxygen demand (COD) determinations using bismuth-based adsorbents. Analytica Chimica Acta (1997).
http://dx.doi.org/10.1016/s0003-2670(97)00541-2

D. E. Kritikos N.P. Xekoukoulotakis E. Psillakis , D. Mantzavinos, Photocatalytic degradation of Reactive Black 5 in aqueous solution: Effect of operating conditions and coupling with ultrasound irradiation. Water Research, 41(10) (2007) 2236–2246.
http://dx.doi.org/10.1016/j.watres.2007.01.048

Y. Zhang, J. Choi, C. Huang, J. Hazardous Mat. B125 (2007) 166.

Portal Business Brasil (2012) Energia Elétrica a terceira mais cara do Brasil. https://sites.google.com/site/portalbusinessbrasil/home/energiabrasileira

UOL (2012) Cotação do dólar. Available in: http://economia.uol.com.br/cotacoes.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize