Hybrid First-Principle/Neural Network Correlations for Thermoelectric Transport Coefficients in Gold-Silver Solutions from Bulk to Nanometer Scale


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


State of art estimation methods were revisited to build hybrid first-principle/artificial neural network correlations to capture the impact of solute concentration, specimen sizes down to nanometer scale, and electron and phonon temperatures in (non)equilibrium for the electric and thermal transport coefficients in gold-silver mixtures at temperatures above the metals Debye temperatures. Deviations with respect to Matthiessen’s additivity rule of both electric and electronic thermal transport coefficients were approximated by means of two neural network correlations as a function of silver atom fraction and temperature. The hybrid approach was confronted and validated against a large repository of data recommended for gold-silver transport properties encompassing pure metals and the full binary-solution composition range. Sensitivity of electric and thermal conductivities in gold-silver mixtures to electron and phonon temperatures, nanoparticle sizes and silver contamination was also discussed in the developed frame. The developed correlations will be useful for estimation of transport properties in areas as diverse as catalysis, electrochemical dissolution and gold nanomaterial synthesis
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Gold-Silver Mixture Electric and Thermal Conductivities; Electron and Phonon Scattering; Relaxation Time; Correlation; Metal Nanoparticle; Electron-Phonon Non-Equilibrium

Full Text:

PDF


References


J. Marsden, I. House, The chemistry of gold extraction, Ellis Horwood Series in Metals and Associated Materials: Great Britain, (1992).

A. Azizi, C.F. Petre, C. Olsen, F. Larachi, Untangling galvanic and passivation phenomena induced by sulfide minerals on precious metal leaching using a new packed-bed electrochemical cyanidation reactor, Hydrometallurgy 107 (2011) 101-111.
http://dx.doi.org/10.1016/j.hydromet.2011.02.003

Y. Zhang, R.W. Cattrall, I.D. McKelvie, S.D. Kolver, Gold, an alternative to platinum group metals in automobile catalytic converters, Gold Bull. 44 (2011) 145-153.
http://dx.doi.org/10.1007/s13404-011-0025-6

C.W. Corti, R.J. Holliday, Commercial aspects of gold applications: From materials science to chemical science, Gold Bull. 37 (2004) 20-26.
http://dx.doi.org/10.1007/bf03215513

C. Burda, X. Chen, R. Narayanan, M.A. ElSayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.
http://dx.doi.org/10.1021/cr030063a

L. Polavarapu, Q.H. Xu, A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties, Nanotechnology 20 (2009) 185606.
http://dx.doi.org/10.1088/0957-4484/20/18/185606

R. Xia, J.L. Wang, R. Wang, X. Li, X. Zhang, X.Q. Feng, Y. Ding, Correlation of the thermal and electrical conductivities of nanoporous gold, Nanotechnology 21 (2010) 085703.
http://dx.doi.org/10.1088/0957-4484/21/8/085703

W.G. Ma, H.D. Wang, X. Zhang, W. Wang, Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films, J. Appl. Phys. 108 (2010) 0643087.
http://dx.doi.org/10.1063/1.3482006

J. Wang, R. Xia, J. Zhu, Y. Ding, X. Zhang, Y. Chen, Effect of thermal coarsening on the thermal conductivity of nanoporous gold, J. Mat. Sci. 47 (2012) 5013-5018.
http://dx.doi.org/10.1007/s10853-012-6377-3

P.G. Klemens, R.K. Williams, Thermal conductivity of metals and alloys, Int. Metals Rev. 31 (1986) 197-215.
http://dx.doi.org/10.1179/imtr.1986.31.1.197

C.Uher, Thermal conductivity of metals. In: Tritt TM (ed.) Thermal conductivity-Theory, properties and applications, Kluwer Academic/Plenum Publishers, New York, pp 21-91, 2004.

C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, T.N. Havill, Thermal conductivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data 7 (1978) 959-1177.
http://dx.doi.org/10.1063/1.555583

C.Y. Ho, M.W. Ackerman, K.Y Wu, T.N. Havill, R.H. Bogaard, R.A. Matula, S.G Oh, H.M. James, Electrical resistivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data 12 (1983) 183-322.
http://dx.doi.org/10.1063/1.555684

D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films, Phys. Rev. B 68 (2003) 064114.
http://dx.doi.org/10.1103/physrevb.68.064114

P.E. Hopkins, P.M. Norris, L.M. Phinney, S.A. Policastro, R.G. Kelly, Thermal conductivity in nanoporous gold films during electron-phonon non-equilibrium, J. Nanomaterials (2008) doi:10.1155/2008/418050.
http://dx.doi.org/10.1155/2008/418050

P.E. Hopkins, J.L. Kassebaum, P.M. Norris, Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films, J. Appl. Phys. 105 (2009) 023710.
http://dx.doi.org/10.1063/1.3068476

J. Yang, Theory of thermal conductivity. In: Tritt TM (ed.) Thermal conductivity-Theory, properties and applications, Kluwer Academic/Plenum Publishers, New York, pp 1-20 (2004).

J.E. Graebner, M.E. Reiss, L. Seibles, T.M. Hartnett, R.P. Miller, C.J. Robinson, Phonon scattering in chemical-vapor-deposition diamond, Phys. Rev. B 50 (1994) 3702-3713.
http://dx.doi.org/10.1103/physrevb.50.3702

N.W. Ashcroft, N.D. Mermin, Physique des solides. Transl. F. Biet and H. Kachkachi, EDP Sciences, France (2002).

J.C. Kraut, W.B. Stern, The density of gold-silver-copper alloys and its calculation from the chemical composition, Gold Bull. 33 (2000) 52-55.
http://dx.doi.org/10.1007/bf03216580

G.A. Slack, S. Galginaitis, Thermal conductivity and phonon scattering by magnetic impurities in CdTe, Phys. Rev. 133 (1964) A253-A268.
http://dx.doi.org/10.1103/physrev.133.a253

N.V. Novikov, A.P. Podoba, S.V. Shmegera, A. Witek, A.M. Zaitsev, A.B. Denisenko, W.R. Fahrner, M. Werner, Influence of isotopic content on diamond thermal conductivity, Diamond & Related Materials 8 (1999) 1602-1606.
http://dx.doi.org/10.1016/s0925-9635(99)00040-0

R.E.B. Makinson, The thermal conductivity of metals, Proc. Camb. Phil. Soc. 34 (1938) 474-497.
http://dx.doi.org/10.1017/s0305004100020442

C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1 (1972) 279-421.
http://dx.doi.org/10.1063/1.3253100

P. Cloutier, C. Tibirna, B.P.A. Grandjean, J. Thibault, NNfit, logiciel de régression utilisant les réseaux à couches, http://www.ulaval.ca/~nnfit, Laval university, Canada (1996).

F. Larachi, L. Belfares, I. Iliuta, B.P.A Grandjean, Heat and mass transfer in cocurrent gas-liquid packed beds: Analysis, recommendations, and new correlations, Ind. Eng. Chem. Res. 42 (2003) 222-242.
http://dx.doi.org/10.1021/ie020416g

M. Kaveh, N. Wiser, Electron-electron scattering in conducting materials. Adv. Phys. 33 (1984) 257-372.
http://dx.doi.org/10.1080/00018738400101671


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize