A Simple Method to Separate the Antimicrobial Peptides from Complex Peptic Casein Hydrolysate and Identification of a Novel Antibacterial Domains within the Sequence of Bovine αs-Casein


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


A simple method to separate antimicrobial peptides from complex peptic hydrolysate of bovine casein is proposed. It consists to precipitation of the active peptides under ionic strength and pH conditions. The peptide extract obtained was fractionated using reverse phase high performance liquid chromatography and the actives fractions are analyzed by mass spectrometry (LC-ESI-MS and MADI-TOF). Several peptides derived mostly from αs-casein are identified. The major component in active fractions are αs2-CN f(164-179), αs2-CN f(148-166), αs2-CN  f(180-207), αs2-CN  f(183-207), αs2-CN f(131-174), αs1-CN f(153-196), αs1-CN f(141-187), αs2-CN f(176-207), αs2-CN f(164-207), αs2-CN f(99-163). The minimum inhibitory concentration and mode of action of the peptide extract and purified peptide αs2-CN f(164-207) were studied against several Gram-positive and Gram negative Bacteria


Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Antimicrobial Peptides; αs-Casein; Hydrolysis; Precipitation

Full Text:

PDF


References


D.D. Kitts, and K. Weiler, Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses used in Isolation and Recovery. Current Pharmaceutical Design 2003 ; 9: 1309-1323
http://dx.doi.org/10.2174/1381612033454883

A. Pellegrini, Antimicrobial Peptides from Food Proteins. Current Pharmaceutical Design, 2003 ;9:1225-1238.
http://dx.doi.org/10.2174/1381612033454865

D.A. Clare, G.L. Catignani and H.E. Swaisgood Biodefense Properties of Milk : The Role of Antimicrobial Proteins and Peptides. Current Pharmaceutical Design, 2003, 9, 1239–1255.
http://dx.doi.org/10.2174/1381612033454874

I. Lopez-Exposito, I. Recio, Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal 2006; 16: 1294–1305.
http://dx.doi.org/10.1016/j.idairyj.2006.06.002

R. Froidevaux, F. Krier, N. Nedjar-Arroume, D. Vercaigne-Marko, E. Kosciarza, C. Ruc kebusch, P. Dhulster, D. Guillochon, Antibacterial activity of a pepsin-derived bovine hemoglobin fragment. FEBS Letters 2001;49:1159–163.
http://dx.doi.org/10.1016/s0014-5793(01)02171-8

N. Nedjar-Arroume, V. Dubois-Delval, K. Miloudi, R. Daoud, F. Krier, , M. Kouach, G. Briand, D. Guillochon, Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides. 2006;27:2082–2089.
http://dx.doi.org/10.1016/j.peptides.2006.03.033

N. Nedjar-Arroume, V. Dubois-Delval, E.Y. Adje, F. Krier, P. Mary, M. Kouach, G. Briand, D. Guillochon, Bovine hemoglobin; an attractive source of antibacterial peptides. Peptides, 2008;29:969–77.
http://dx.doi.org/10.1016/j.peptides.2008.01.011

H.R. Ibrahim, E. Iwamori, Y. Sugimoto, T. Aoki, Identification of a distinct antibacterial domain within the N-lobe of ovotransferrin. Biochim Biophys Acta 1998;1401:289–303.
http://dx.doi.org/10.1016/s0167-4889(97)00132-8

H. R. Ibrahim, U. Thomas and A. Pellegrini A, helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol.Che, 2001; l276:43767–43774.
http://dx.doi.org/10.1074/jbc.m106317200

E. Lahov, D. Edelstein, M.T. Sode-Mogensen and E. Sofer, Properties of basic glycopeptides released from cow milk protein by heat. Milchwissenschaft. 1971;26:489-495.

R. D. Hill, E.Lahov and D.Givol, A rennin-sensitive bond in alpha and beta casein. Journal of Dairy Research 1974;41: 147–153.
http://dx.doi.org/10.1017/s0022029900015028

H.D. Zucht, , M. Raida, K. Adermann, H.J. Magert and W. G. Forssmann, Casocidin-I : A casein-αs2 derived peptide exhibits antibacterial activity. FEBS Letters, 1995;372:185–188.
http://dx.doi.org/10.1016/0014-5793(95)00974-e

I. Recio, S.Visser, Identication of two distinct antibacterial domains within the sequence.of bovine αs2-casein. Biochimica et Biophysica Acta.1999; 1428: 314–326.
http://dx.doi.org/10.1016/s0304-4165(99)00079-3

K.B. McCann, B.J. Shiell, W.P. Michalski, A. Lee, J. Wan, H. Roginski, M.J. Coventry, Isolation and characterisation of antibacterial peptides derived from the f(164–207) region of bovine αS2-casein. International Dairy Journal 2005; 15:133–143.
http://dx.doi.org/10.1016/j.idairyj.2004.06.008

K.B. McCann, B.J. Shiell, W.P. Michalski, A. Lee, J. Wan,. H .Roginski, M.J. Coventry, Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. International Dairy Journal 2006 ;16:316–323.
http://dx.doi.org/10.1016/j.idairyj.2005.05.005

M. Malkoski, S.G. Dashper, N.M. O’Brien-Simpson, G.H. Talbo, M. Marcis, K.J. Cross and E.C.Reynolds, Kappacin, a novel antibacterial peptide from bovine milk. Antimicrobial Agents and Chemotherapy 2001; 45: 2309–2315.
http://dx.doi.org/10.1128/aac.45.8.2309-2315.2001

C.Liepke, H.D. Zucht, W.G. Forssman, and L. Ständker, Purification of novel peptide antibiotics from human milk. Journal of Chromatography B 2001; 752:369–377.
http://dx.doi.org/10.1016/s0378-4347(00)00516-8

F. Minervini, F. Algaron, C.G. Rizzello, P.F. Fox, V. Monnet and M.Gobetti, Angiotensin I-Converting-Enzyme-Inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 Proteinasehydrolyzed caseins of milk from six species. Applied and Environmental Microbiology 2003; 69:297–5305.
http://dx.doi.org/10.1128/aem.69.9.5297-5305.2003

A. Pellegrini, U. Thomas, N. Bramaz, P. Hunziker, and R. von Fellenberg, Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochimica et Biophysica Acta 1999;1426:439–448.
http://dx.doi.org/10.1016/s0304-4165(98)00165-2

A. Pellegrini, C. Dettling, U. Thomas and P. Hunziker, Isolation and characterization of four bactericidal domains in the β-lactoglobulin. Biochimica et Biophysica Acta 2001; 1526:131–140.
http://dx.doi.org/10.1016/s0304-4165(01)00116-7

W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase, and M. Tomita, Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta. 1992; 1121: 130–136.
http://dx.doi.org/10.1016/0167-4838(92)90346-f

I. Recio, and S.Visser, Two ion-exchange chromatographic methods for the Isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane. Journal of Chromatography A 1999;831:191–201.
http://dx.doi.org/10.1016/s0021-9673(98)00950-9

P.M. Nielsen, D. Petersen, C. Dambmann, Improved Method for Determining Food Protein Degree of Hydrolysis. Journal of Food Science 2001; 66:642-646.
http://dx.doi.org/10.1111/j.1365-2621.2001.tb04614.x

F.C. Church, H.E. Swaisgood, D.H. Porter, and G.L. Catignani, Spectrophotometric essay using O-PhthaldiAldehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 1983;66: 1219-1227.
http://dx.doi.org/10.3168/jds.s0022-0302(83)81926-2

J. Srividhya, and S. Schnell, Why substrate depletion has apparent first-order kinetics in enzymatic digestion. Computational Biology and Chemistry 2006;30 :209-214.

http://dx.doi.org/10.1016/j.compbiolchem.2006.03.003

P. Chantaysakorn, and R.L. Richter. Antimicrobial properties of pepsin-digested lactoferrin added to carrot juice and filtrates of carrot juice. Journal of Food Protection, 2000; 63:376–380.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize