Effect of II-VI Nano Fillers on Storage Modulus, Glass Transition Temperature and Activation Energy of Poly (Vinyl Chloride)


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


CdS/PVC and ZnS/PVC nanocomposites were prepared by solution mixing taking different wt. % (2, 4, 6 & 8) of CdS and ZnS nanopowders synthesized through the wet chemical method respectively. The morphology of these nanocomposites has been characterized using transmission electron microscopy. The dynamic mechanical analyzer (DMA) was used to study the storage modulus and Tan δ of CdS/PVC and ZnS/PVC. The variation of storage modulus and glass transition temperature for CdS/PVC and ZnS/PVC nanocomposites with filler content has been explained on the basis of dispersion of nano fillers.  An effort has also been made to determine the glass transition activation energy using Vogel-Fulcher-Tammann (VFT) equation. Effect of CdS and ZnS nanoparticle concentration on glass transition activation energy has been discussed
Copyright © 2013 Praise Worthy Prize - All rights reserved.

Keywords


Nanocomposite; Storage Modulus; Glass Transition Temperature; Activation Energy

Full Text:

PDF


References


K. Endo, Synthesis and structure of poly(vinyl chloride), Prog. Polym. Sci. 27 (2002) 2021–2054.
http://dx.doi.org/10.1016/s0079-6700(02)00066-7

M.T.F Arguelles, A. Yakovlev, R.A. Sperling, C. Luccardini, S. Gaillard, A.S. Medel, J.M. Mallet, J.C. Brochon, A. Feltz, M. Oheim, W. J. Parak, Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as fret-based nanoprobes, Nano Lett. 7 (2007) 2613-2617.
http://dx.doi.org/10.1021/nl070971d

W.H. Starnes Jr., Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride), Prog. Polym. Sci. 27 (2002) 2133-2170.
http://dx.doi.org/10.1016/s0079-6700(02)00063-1

M. Sowe, M. Polaskova, I. Kuritka, T. Sedlacek, M. Merchan, Analysis of antibacterial action of polyvinyl chloride surface modified with gentian violet, Internat. J. Polym. Anal. Charact. 14 (2009) 678-685.
http://dx.doi.org/10.1080/10236660903298327

P.V. Smallwood, H.F Mark, N.M. Bikales, C.G Overberger, editors. Encyclopedia of Polymer Science and Engineering 2nd ed Vol. 17 (Wiley, 1989)
http://dx.doi.org/10.1002/pol.1988.140260314

J. Li, L.W Wang, Comparison between quantum confinement effects of quantum wires and dots, Chem. Mater. 16 (2004) 4012–4015.
http://dx.doi.org/10.1021/cm0494958

C.B. Murray, C.R Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545-610.

S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, 1998).
http://dx.doi.org/10.1017/cbo9780511524141

Z.H. Hu, L.Y Li, X.D Zhou, X. Fu, G.H. Gu, Solvothermal synthesis of hollow ZnS spheres, J. Colloid. Interface Sci. 294 (2006) 328-333.
http://dx.doi.org/10.1016/j.jcis.2005.07.050

C.L. Lu, Z.C Cui, Z. Li, B. Yang, J.C. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites, J. Mater. Chem. 13 (2003) 526-530.
http://dx.doi.org/10.1039/b208850a

Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities, Adv. Mater. 12 (2000) 1295-1298.
http://dx.doi.org/10.1002/1521-4095(200009)12:17%3C1295::aid-adma1295%3E3.3.co;2-2

X.F Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers, Nat. 421 (2003) 241-245.
http://dx.doi.org/10.1038/nature01353

N. Tokio, F. Keisuke, K. Akio, High-efficiency cadmium-free Cu(In,Ga)Se2 thinfilm solar cells with chemically deposited ZnS buffer layers, IEEE Trans. Electron Devices 46 (1999) 2093-2097.
http://dx.doi.org/10.1109/16.792002

R. Priya, S. Kanmani, Solar photocatalytic generation of hydrogen under ultraviolet-visible light irradiation on (CdS/ZnS)/Ag2S + (RuO2/TiO2) photocatalysts,. Bull. Mater. Sci. 1 (2009) 85–88.
http://dx.doi.org/10.1007/s12034-010-0013-0

J. Ramsden, M. Grutzel, Photoluminescence of small cadmium sulphide particles, J. Chem. Soc. Faraday Trans. 80 (1984) 919–933.
http://dx.doi.org/10.1039/f19848000919

D.J. Godovsky, Device application of polymer-nanocomposites, Adv. Polym. Sci. 153 (2000) 163-205.
http://dx.doi.org/10.1007/3-540-46414-x_4

W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells, Sci. 295 (2002) 2425–2427.
http://dx.doi.org/10.1126/science.1069156

D. Patidar, S. Agrawal, N.S. Saxena, Storage modulus and glass transition behaviour of CdS/PMMA nano-composites, J. Exper. Nanosci. 6 (2011) 441- 449.
http://dx.doi.org/10.1080/17458080.2010.509870

K.S. Rathore, D. Patidar, Y. Janu, N.S. Saxena, K.B. Sharma, T.P. Sharma, Structural and optical characterization of chemically synthesized ZnS nano-particles, Chal. Lett. 5 (2008) 105–110.

S. Agrawal, D. Patidar, N.S. Saxena, Glass transition temperature and thermal stability of ZnS/PMMA nanocomposites, Phase Trans. 84 (2011) 888-900.
http://dx.doi.org/10.1080/01411594.2011.563152

S. Agrawal, D. Patidar, N.S. Saxena, Effect of ZnS nano-filler and temperature on mechanical properties of poly (methyl methacrylate), J. Appl. Polym. Sci. 123 (2012) 2431-2438.
http://dx.doi.org/10.1002/app.34800

K.P. Menard KP, Dynamic Mechanical Analysis: A Practical Introduction (CRC press, 1999).
http://dx.doi.org/10.1201/9781420049183

M.D. Ediger, C.A. Angell, S.R. Nagel SR, Supercooled liquids and glasses, J. Phys. Chem. 100 (1996) 13200–13212.
http://dx.doi.org/10.1021/jp953538d

P.C. Hiemenz, T.P. Lodge, Polymer Chemistry 2nd ed (CRC Press, 2007).

D. Ratna, S. Divekar, A.B. Samui, B.C. Chakraborty, A.K. Banthia, Poly (ethylene oxide)/clay nanocomposite: Thermomechanical properties and morphology, Polym. 47 (2006) 4068–4074.
http://dx.doi.org/10.1016/j.polymer.2006.02.040

M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, G. Thompson, The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite, Polym. 48 (2007) 5662–5670.
http://dx.doi.org/10.1016/j.polymer.2007.06.073

L.E. Nielsen, R.F. Landel, Mechanical Properties of Polymers and Composites 2nd ed (Marcel Dekker, 1994).
http://dx.doi.org/10.1177/004051759406401109

X. Zhang, L.S. Loo, Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites, Macromole. 42 (2009) 5196–5207.
http://dx.doi.org/10.1021/ma9004154

P.K. Maji, P.K. Guchhait, A.K. Bhowmick, Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites, Appl. Mater. Interfaces 1 (2009) 289–300.
http://dx.doi.org/10.1021/am800020k

S. Srivastava, J.K. Basu, Experimental evidence for a new parameter to control the glass transition of confined polymers, Phys. Rev. Lett. 98 (2007)165701–165704.
http://dx.doi.org/10.1103/physrevlett.98.165701


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize