Open Access Open Access  Restricted Access Subscription or Fee Access

Rutting and Resilient Modulus Behavior of Asphalt Concrete Modified with Crump Tire Rubber, Microcrystalline Synthetic Wax and Nano Silica


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v12i3.19609

Abstract


This study explores the effect of three types of modifiers on the rutting and resilient modulus performance of asphalt concrete mixtures using the dynamic creep test. Modifiers have been added to the asphalt binder at optimum percentages that have been chosen based on a previous study by the authors. 108 Superpave asphalt mixture specimens have been prepared. In this study, the dynamic creep test has been conducted at different temperatures (25 °C, 40 °C and 55 °C) and at three loading frequencies (1, 4 and 8 Hz). Accumulated axial micro-strain, creep stiffness modulus, and resilient modulus values have been measured. The results have showed an enhancement in the rutting resistance at high frequencies when adding the modifiers. The Crump Tire Rubber modified mixtures have showed the best results at high temperatures, and the Nano Silica modified mixtures had the best outcomes at intermediate temperatures, while the Microcrystalline Synthetic Wax modified mixtures have achieved the best results at lower temperatures. Statistical and regression analyses have showed that changing temperature, frequency, and modifier type had a significant effect on the accumulated axial micro-strain, creep stiffness modulus, and resilient modulus values. Models have been generated with relatively high coefficients of determination (R2) and adjusted R2, indicating their ability in explaining much of the variability in the response variables.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Asphalt Concrete; Modifiers; Dynamic Creep; Crumb Tire Rubber; Microcrystalline Synthetic Wax; Nano Silica; Rutting; Resilient Modulus

Full Text:

PDF


References


Moghaddam, T. B., Soltani, M., & Karim, M. R. (2014). Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test. Materials & Design, 53, 317-324.
https://doi.org/10.1016/j.matdes.2013.07.015

Valkering CP, Lancon DJ, de Hilster E., &Stoker D. A. (1990). Rutting resistance of asphalt mixes containing non-conventional and polymer modified binders. Journal of the Association of Asphalt Paving Technologists, 59.

Kalyoncuoglu, S. F., & Tigdemir, M. (2011). A model for dynamic creep evaluation of SBS modified HMA mixtures. Construction and Building Materials, 25(2), 859-866.
https://doi.org/10.1016/j.conbuildmat.2010.06.101

Khodaii, Ali, & Mehrara, Amir. (2009). Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Construction and Building Materials, 23(7), 2586-2592.‏
https://doi.org/10.1016/j.conbuildmat.2009.02.015

Brown, R. E., Kandhal, P. S., & Zhang, J. (2001). Performance testing for hot mix asphalt (pp. 1-72). AL, USA: National Center for Asphalt Technology, Auburn University.

Sebaaly, P. E., Little, D., Hajj, E. Y., & Bhasin, A. (2007). Impact of lime and liquid antistrip agents on properties of Idaho hot-mix asphalt mixture. Transportation Research Record, 1998(1), 65-74.
https://doi.org/10.3141/1998-08

Hao, P., & Liu, H. (2006). Effect of Bitumen Acid Number on Moisture Susceptibility of Asphalt Mixtures. Journal of Testing and Evaluation, 34(4), 327-332.
https://doi.org/10.1520/jte14080

Lu, X., & Redelius, P.(2007). Effect of bitumen wax on asphalt mixture performance. Construction and Building Materials, 21(11), 1961-1970.
https://doi.org/10.1016/j.conbuildmat.2006.05.048

Danowski, M. (2007). Application of hot mix asphalt of low-term consolidation – German experiences. Nowości Zagranicznej Techniki Drogowej. 196,12-35

Khedaywi, T.,Tamimi, A., Al-Masaeid, H., and Khamaiseh, K . (1994)Laboratory Investigation on Properties of Asphalt Rubber Binder and Rubber Asphaltic Concrete Mixtures. Transportation Research Board 1417, Washington, U.S.A., 93 – 98.

Khedaywi, T. and Abu – Orabi, S. (1989). Effect of Shale Ash, Rubber Ash, Husk Ash, and Polyethylene on Asphalt Cement.Journal of Petroleum Research, 8(2), 193 – 206.

Navarro, F. J., Partal, P., Martínez-Boza, F. J., & Gallegos, C. (2007). Influence of processing conditions on the rheological behavior of crumb tire rubber-modified bitumen. Journal of Applied Polymer Science, 104(3), 1683-1691.
https://doi.org/10.1002/app.25800

Canestrari, F., Graziani, A., Pannunzio, V., & Bahia, H. U. (2013). Rheological Properties of Bituminous Binders with Synthetic Wax. International Journal of Pavement Research and Technology, 6(1), 15-21.

Iwanski, M., & Mazurek,G. (2013). The effect of synthetic wax on the resistance to permanent deformation of the AC 11S asphalt concrete. Archives of Civil Engineering, 59(3), 295–312.
https://doi.org/10.2478/ace-2013-0016

Iwanski, M., & Mazurek, G. (2012). Rheological characteristics of synthetic wax-modified asphalt binders. Polimery, 57(9), 661-664.
https://doi.org/10.14314/polimery.2012.661

Ylva, E., Yuksel, T., & Ulf, I. (2006). Effects of commercial waxes on asphalt concrete mixtures performance at low and medium temperatures. Cold Regions Science and Technology, 45(1), 31-41.
https://doi.org/10.1016/j.coldregions.2006.01.002

Zalnezhad, H., Galooyak, S. S., Farahani, H., & Goli, A. ( 2015). Investigating the effect of nano-silica on the specification of the sasobit warm mix asphalt. Petroleum & Coal, 57(5), 509-515.

Galooyak, S. S., Palassi, M., Goli, A., & Farahani, H. Z. (2015). Performance Evaluation of Nano-silica Modified Bitumen. International Journal of Transportation Engineering, 3(1), 55-66.

Alhamali, D. I., Yusoff, N. I. M., Wu, J., Liu, Q., Albrka, S. I. (2015). The effects of nanosilica particles on the physical properties and storage stability of polymer-modified bitumen. Journal of Civil Engineering Research, 5, 11-16.

Saltan, M., Terzi, S., & Karahancer, S. (2017). Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976-984.
https://doi.org/10.1016/j.conbuildmat.2017.09.069

AASHTO.(2011b).Standard method of test for viscosity determination of asphalt binder using rotational viscometer. T 316, Washington, DC.

ASTM. (2006). Standard test method for penetration of bituminous materials. D5, West Conshohocken, PA.

ASTM. (2009). Standard test method for density of semi-solid bituminous materials (pycnometer method). D70, West Conshohocken, PA.
https://doi.org/10.1520/d0070-09e01

ASTM. (2007). Standard test method for ductility of bituminous materials. D113, West Conshohocken, PA.

ASTM. (2012). Standard test method for flash and fire points by Cleveland open cup tester. D92, West Conshohocken, PA.
https://doi.org/10.1520/d8254

ASTM. (1982). Method for softening point of bitumen in ethylene glycol (ring-and-ball). D2398, West Conshohocken, PA.

AASHTO. (2002a). Specific gravity and absorption of fine aggregate. T 84/85, Washington, DC.

ASTM. (2010). Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. D4791, West Conshohocken, PA.
https://doi.org/10.1520/d4791-19

AASHTO. (2002b). Standard method of test for determining the percentage of fracture in coarse aggregate. TP 61, Washington, DC.

AASHTO.(2011a).Standard method of test for uncompacted void content of fine aggregate. T 304, Washington, DC.

AASHTO. (2008). Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. T 176, Washington, DC.

AASHTO. (2002c). Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. T 96, Washington, DC.
https://doi.org/10.1520/c0131-06

Fini, E. H., Hajikarimi, P., Rahi, M., & Nejad, F. M. (2015). Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. Journal of Materials in Civil Engineering, 1–9.
https://doi.org/10.1061/(asce)mt.1943-5533.0001423

Al-Omari, A., Taamneh, M., Khasawneh, M. A., & Al-Hosainat, A. (2018). Effect of crumb tire rubber, microcrystalline synthetic wax, and nano silica on asphalt rheology. Road Materials and Pavement Design, 1-23.
https://doi.org/10.1080/14680629.2018.1527718

Al-Omari, A. A., Khasawneh, M. A., Al-Rousan, T. M., & Al-Theeb, S. F. (2019). Static creep of modified superpave asphalt concrete mixtures using crumb tire rubber, microcrystalline synthetic wax, and nano-silica. International Journal of Pavement Engineering, 1-12.
https://doi.org/10.1080/10298436.2019.1646913

Huang, S. (2008). Rubber concentrations on rheology of aged asphalt binders. Journal of Materials in Civil Engineering, 20, 221–229.
https://doi.org/10.1061/(asce)0899-1561(2008)20:3(221)

Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K. & Goh, S. W. (2012).Rheological properties and chemical bonding of asphalt modified with nanosilica. Journal of Materials in Civil Engineering, 25(11), 1619-1630.
https://doi.org/10.1061/(asce)mt.1943-5533.0000690

British Standards Institution. (1996) Method for Assessment of Resistance to Permanent Deformation of Bitumen Aggregate Mixtures Subject to Unconfined Uniaxial Loading. Draft for Development DD 185, London.
https://doi.org/10.3403/00216071

Palit, S. K., Reddy, K. S., & Pandey, B. B. (2004). Laboratory evaluation of crumb rubber modified asphalt mixes. Journal of materials in civil engineering, 16(1), 45-53.
https://doi.org/10.1061/(asce)0899-1561(2004)16:1(45)

Farouk, A. I. B., Hassan, N. A., Mahmud, M. Z. H., Mirza, J., Jaya, R. P., Hainin, M. R., & Yusoff, N. I. M. (2017). Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture. Materials and Structures, 50(1), 12.
https://doi.org/10.1617/s11527-016-0932-3

Yusoff, N. I. M., Breem, A. A. S., Alattug, H. N. M., Hamim, A., & Ahmad, J. (2014). The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 72, 139-147.
https://doi.org/10.1016/j.conbuildmat.2014.09.014

Kim, Y. R., Seo, Y., King, M., & Momen, M. (2004). Dynamic modulus testing of asphalt concrete in indirect tension mode. Transportation Research Record, 1891(1), 163-173.
https://doi.org/10.3141/1891-19

Kaloush, K. E., Biligiri, K. P., Zeiada, W. A., Rodezno, M. C., & Reed, J. X. (2010). Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests. Journal of Testing and Evaluation, 38(4), 400-411.
https://doi.org/10.1520/jte102442

Merusi, F., & Giuliani, F. (2011). Rheological characterization of wax-modified asphalt binders at high service temperatures. Materials and Structures, 44(10), 1809-1820.
https://doi.org/10.1617/s11527-011-9739-4

Hassan, A. (2013). Influence of crumb rubber modifier on performance characteristics of stone mastic asphalt, Asim Hassan Ali (Doctoral dissertation, University of Malaya).

Thodesen, C., Shatanawi, K., & Amirkhanian, S. (2009). Effect of crumb rubber characteristics on crumb rubber modified (CRM) binder viscosity. Construction and Building Materials, 23(1), 295-303.
https://doi.org/10.1016/j.conbuildmat.2007.12.007

Polacco, G., Filippi, S., Paci, M., Giuliani, F., & Merusi, F. (2012). Structural and rheological characterization of wax modified bitumens. Fuel, 95, 407-416.
https://doi.org/10.1016/j.fuel.2011.10.006

Ezzat, H., El-Badawy, S., Gabr, A., Zaki, E. S. I., & Breakah, T. (2016). Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Engineering, 143, 1260-1267.
https://doi.org/10.1016/j.proeng.2016.06.119

Universal Testing Machine, (1998). Feed Back Controlled Repeated Uniaxial Loading Strain Test-Test NO. 020.

Kök, B. V., & Çolak, H. (2011). Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Construction and Building Materials, 25(8), 3204-3212.
https://doi.org/10.1016/j.conbuildmat.2011.03.005

Radziszewski, P. (2007). Modified asphalt mixtures resistance to permanent deformations. Journal of Civil Engineering and Management, 13(4), 307-315.
https://doi.org/10.3846/13923730.2007.9636451

Mashaan, N. S., & Karim, M. R. (2013). Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep. The Scientific World Journal, 2013, 7.
https://doi.org/10.1155/2013/981637

Norouzi, A., Kim, D., & Kim, Y. R. (2016). Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Materials and Structures, 49(9), 3619-3634.
https://doi.org/10.1617/s11527-015-0744-x

Yohannes, B., Hill, K., & Khazanovich, L. (2009). Mechanistic Modeling of Unbound Granular Materials.

Shafabakhsh, G. H., & Ani, O. J. (2015). Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 692-702.
https://doi.org/10.1016/j.conbuildmat.2015.08.083


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize