Open Access Open Access  Restricted Access Subscription or Fee Access

Abductive Approach Using Fuzzy Petri Nets for Industrial System Diagnosis

A. Ghernaout(1*), A. Liazid(2), A. Benamar(3), N. Zerhouni(4)

(1) Université Aboubekr Belkaid, TLEMCEN, Algeria
(2) ENSET, Algeria
(3) ENSET, Algeria
(4) LAB-ENSMM, France
(*) Corresponding author


DOI: https://doi.org/10.15866/irece.v6i5.7978

Abstract


In an industrial decentralization context of control and migration of intelligence downwards, mechanical equipments with more and more electronics and automations have been developed given the so called mechatronic systems. However this rapid progression of new technology has contributed to increase the systems complexity and decrease the mastering. The industrial diagnosis associated at a precocious detection of degradations have a key role in quality mastering, availability improve and productivity of the production tool. The industrial diagnosis methods are divided in two categories: diagnosis methods with formal model of the equipment and diagnosis methods without equipment model. The formal mathematical models of industrial equipments are often with uncertainties and difficult to built. This paper proposes a method based explanatory model which is best suited to model the cause-effect relationships essential for the industrial diagnosis. We adapt a novel tool of assistance to diagnosis based on the fuzzy Petri nets (FPN). An industrial application concludes this work.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Industrial Diagnosis; Artificial Intelligence; Fuzzy Petri Nets; Explanatory Model; Fault Tree; FMEA

Full Text:

PDF


References


Dubuisson, B., Diagnostic et reconnaissance des formes, Paris, Edition Hermès, (1990).

Peng, Y., J.A. Reggia, Abductive Inference Models For Diagnostic Problem- Solving, Springer-Verlag, New York, (1990).
http://dx.doi.org/10.1007/978-1-4419-8682-5_8

A. Ghernaout, D. Racoceanu et N. Zerhouni, Approche abductive utilisant les réseaux de Petri Flous pour le diagnostic et la qualité des systèmes mécatroniques, 6ème Congrès international du Génie Industriel, Besançon, (2005).

Basseville M., Cordier M.O., «Surveillance et diagnostic de systèmes dynamiques : approches complémentaires du traitement du signal et de l’intelligence artificielle», Rapport INRIA, n°2861, (1996).

Piechowiak, S., Intelligence artificielle et diagnostic, Techniques de l’Ingénieur, S7 217, traité Informatique Industrielle, (2004).

Monnin M., «Surveillance et aide au diagnostic en utilisant des technique de l’intelligence artificielle. Utilisation des Réseaux de Petri flous», Mémoire de DEA, ENS2M, Besançon, (2004).

Bouchon-Meunier, B. et C. Marsala Logique floue, principes, aide à la décision, Ed. Hermes, (2003).

Looney C.G., «Fuzzy Petri Nets for Rule-Based Decisionmaking», IEEE Transactions on Systems, Man, and Cybernetics, 18(1) 178-183, (1988).
http://dx.doi.org/10.1109/21.87067

Bugarin A.J., Barro S., «Fuzzy Reasoning Supported by Petri Nets», IEEE Transactions on Fuzzy Systems, 2(2) 135-150, (1994).
http://dx.doi.org/10.1109/91.277962

Konar A., Mandal A.K., «Uncertainty Management in Expert Systems Using Fuzzy Petri Nets», IEEE Transactions on Knowledge and Data Engineering, 8(1) 96 – 105, (1996).
http://dx.doi.org/10.1109/69.485639

Scarpelli H., Gomide F., Pedrycz W., «Modeling Fuzzy Reasoning Using High Level Fuzzy Petri Nets», International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4(1) 61-85, (1996).
http://dx.doi.org/10.1142/s0218488596000056

Gupta M.M., Ragade R.K., Yager R.R., «An Approach to Fuzzy Reasoning Method Yahachiro Tsukamoto, Advances in Fuzzy Set Theory and Applications», North- Holland Publishing Company, (1979).

Looney C. G., Liang L. R., «Inference via Fuzzy Bielef Networks», Proceeding of the ISCA International Conference, (2002).

LabVIEW, « Manuel de l’utilisateur », National Instruments, Référence 321190B-01, Edition de juillet 1998.

Aghasaryan A., Boubour R., Fabre E., Jard C., Benveniste A., (1997) «A Petri Net Approach to fault detection and diagnosis in distributed systems», Publication interne n°1117 IRISA.
http://dx.doi.org/10.1109/cdc.1997.650721

Tromp L., «Surveillance et diagnostic de systèmes industriels complexes : une approche hybride numérique/symbolique», Thèse de doctorat université de Rennes 1, (2000).

Minca E., Racoceanu D., Zerhouni N., «Monitoring Systems Modeling and Analysis Using Fuzzy Petri Nets», Studies in Informatics and Control, Vol. 11, No. 4, (2002).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize