Open Access Open Access  Restricted Access Subscription or Fee Access

Transport and Contact between Rigid Bodies to Simulate the Jam Formation in Urban Flows

(*) Corresponding author

Authors' affiliations



This study deals with simulation of interaction of bodies in urban flow when the bodies are assimilate to have a rectangular shape. A Galerkin type finite element discretization with velocity field richer than pressure field is employed to obtain the fluid discretized non-linear relations. The particles displacements are computed by using a rigid-body motion method and a collision strategy is developed to handle cases in which bodies touch.
Copyright © 2015 Praise Worthy Prize - All rights reserved.


2D Horizontal Flow; Saint-Venant; Finite Element; Particles; Interaction; Collision

Full Text:



Hu H.H., Joseph D.D., Crochet M.J., “Direct simulation of fluid particles motions”, Theoret Comput. Fluid Dynamics, 3, 285-306, (1992)

Glowinsky R., Pan T.W. and Perieux J., “A fictitious domain method for Direchlet problem and applications”, Computer Methods in Applied Mechanics and engineering, 111, 283-303, (1994).

Johnson A., Tezduyar T., “3-D simulation of fluid-rigid body interactions with the number of rigid bodies reaching 100.”, Comp. Math. Appl. Mech. Eng., 145, 301-321, (1997)

Pan T.W., Glowinsky R., Joseph J.D., “Simulating the dynamics of fluid-cylinder interactions”, J. Zhejiang Univ. SCI, 6A(2), 97-109, (2005).

Crowe C.T., Sharma M.P. & Stock D.E. “The particle-source-in cell (PSI-CELL) model for gas-droplet flows”. Trans. ASME J. Fluids Engrg. 99, 325-332, 1977.

Gauvin W.H., Katta S. & Knelman F.H. “Drop trajectory predictions and their importance in the design of spray dryers”. Int. J. Multiphase Flow 1, 793-816, 1975.

Glowinski R., Pan T.W., Hesla T.I. & Joseph D.D. “A distributed Lagrange multiplier/fictitious domain method for particulate flows”. Int. J. Multiphase Flow 25, 755-794, 1999.

Batchelor G.K., “An Introduction to Fluid Dynamics”. Cambridge University Press, Cambridge, 1967.

Hadji S., “Méthode de résolution pour les fluides incompressibles”, Phd thesis, 1995.

Gibilaro L.G., Di Felice R., Waldram S.P. & Foscolo P.U. “Generalized friction factor and drag coefficient correlations for fluid-particle interactions”. Chem. Engng. Sci. 40, 1817-1823, 1985.

Hadji S., Dhatt G., “Asymptotic-Newton method for solving incompressible flows”, Int. J. Numer. Methods in fluids, 44, 861-878, 1997.;2-o

Patankar N.A. & Joseph D.D. “Lagrangian numerical simulation of particulate flows”. Int. J. Multiphase Flow, in review, 1999.

Maxey M.R., Riley J.J.. “Equation of motion for a small rigid sphere in a nonuniform flow”, Phys. Fluids 26, 883-889, 1983.

Kim J. & Moin P. “Application of a fractional-step method to incompressible Navier-Stokes equations”. J. Comput. Phys. 59, 308-323, 1985.

D’Avino G., Maffettone P.L., Hulsen M.A., Peters G.W.M., "A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid", Journal of Computational Physics 226 688–711, 2007.

Hu H.H., Joseph D.D. & Crochet M.J. “Direct numerical simulation of fluid particle motions”. Theoret. Comput. Fluid Dynamics. 3, 285-306, 1992.

Yin C., Rosendahl L., Kaer S.K, Sorensen H, “Modelling the motion of cylindrical particles in a non-uniform flow”, Chemical Engineering Science, 58, 3489-3498, (2003)

Guala M. , Stocchino A., "Large-scale flow structures in particle–wall collision at low Deborah numbers", European Journal of Mechanics B/Fluids 26 511–530, 2007

Dukowicz J.K. “A particle-fluid numerical model for liquid sprays”. J. Comput. Phys. 35, 229-253, 1980.

Lohner R., “Robust Vectorized Search Algorithms for Interpolation on Unstructured Grids”, Journal of Computational Physics, 118, 380-387, (1995)

Schindler M., Talkner P., Kostur M., Hanggi P., "Accumulating particles at the boundaries of a laminar flow", Physica A 385 46–58, 2007.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize