Open Access Open Access  Restricted Access Subscription or Fee Access

Turbidity Removal from Synthetic Bentonite Suspension Using Opuntia Ficus-Indica (Cactus)


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v15i1.23223

Abstract


The effectiveness of Opuntia ficus-indica (cactus) juice, a macromolecular flocculant, in removing turbidity of mineral origin (synthetic suspension of bentonite clay) has been studied in this paper. The results obtained in this study have clearly showed good performance in terms of turbidity elimination treatment. In this study, it has been possible to reduce turbidity at different doses. This reduction has exceeded 83%, 82%, and 97% for 0.5g/L, 2.5 g/L, and 5 g/L of initial dryness, respectively, and each initial concentration of dryness has corresponded to an optimal dosage varying from 2.64 to 7.92 g/kg DM. The obtained results have led to propose that the predominant mechanism involved during bentonite flocculation is adsorption and bridging. The effect of pH on turbidity removal and floc formation using cactus juice has been studied for bentonite suspension (2g/l). Only in acidic pH there was no flocculation activity. In fact, this plant has shown itself to be a biodegradable and harmless flocculant, and it is available for direct use.
Copyright © 2024 Praise Worthy Prize - All rights reserved.

Keywords


Adsorption and Bridging; Bentonite Clay; Cactus (Opuntia Ficus-Indica); Turbidity Removal; Coagulation and Flocculation

Full Text:

PDF


References


A. Benettayeb, S. Ghosh, M. Usman, F.Z. Seihoub, Some Well-Known Alginate and Chitosan Modifications Used in Adsorption : A Review, Water J. 14 (2022) 1-26.
https://doi.org/10.3390/w14091353

A. Benettayeb, E. Guibal, A. Bhatnagar, A. Morsli, R. Kessas, Effective removal of nickel ( II ) and zinc ( II ) in mono-compound and binary systems from aqueous solutions by application of alginate-based materials, Int. J. Environ. Anal. Chem. 00 (2021) 1-22.
https://doi.org/10.1080/03067319.2021.1887164

A. Benettayeb, E. Guibal, A. Morsli, R. Kessas, Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II), Chem. Eng. J. 316 (2017) 704-714.
https://doi.org/10.1016/j.cej.2017.01.131

M.F. Hamza, Y. Wei, A. Benettayeb, X. Wang, E. Guibal, Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative, J. Mater. Sci. 55 (2020) 4193-4212.
https://doi.org/10.1007/s10853-019-04235-8

A. Benettayeb, A. Morsli, K.Z. Elwakeel, M.F. Hamza, E. Guibal, Recovery of heavy metal ions using magnetic glycine-modified chitosan-application to aqueous solutions and tailing leachate, Appl. Sci. 11 (2021) 8377.
https://doi.org/10.3390/app11188377

Y. Rashtbari, F. Sher, S. Afshin, A. Hamzezadeh bahrami, S. Ahmadi, O. Azhar, A. Rastegar, S. Ghosh, Y. Poureshgh, Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption, Chemosphere. 287 (2022).
https://doi.org/10.1016/j.chemosphere.2021.132114

C.A. Igwegbe, J.O. Ighalo, S. Ghosh, S. Ahmadi, V.I. Ugonabo, Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: a review, Biomass Convers. Biorefinery. (2021).
https://doi.org/10.1007/s13399-021-01739-9

S. Ghosh, A. Malloum, C.A. Igwegbe, J.O. Ighalo, S. Ahmadi, M.H. Dehghani, A. Othmani, Ö. Gökkuş, N.M. Mubarak, New generation adsorbents for the removal of fluoride from water and wastewater: A review, J. Mol. Liq. 346 (2022).
https://doi.org/10.1016/j.molliq.2021.118257

P. Stolzenburg, A. Capdevielle, S. Teychené, B. Biscans, Struvite precipitation with MgO as a precursor: Application to wastewater treatment, Chem. Eng. Sci. 133 (2015) 9-15.
https://doi.org/10.1016/j.ces.2015.03.008

T.Y. Lin, W.S. Chai, S.J. Chen, J.Y. Shih, A.K. Koyande, B.L. Liu, Y.K. Chang, Removal of soluble microbial products and dyes using heavy metal wastes decorated on eggshell, Chemosphere. 270 (2021) 128615.
https://doi.org/10.1016/j.chemosphere.2020.128615

D.S. S, V. Vishwakarma, Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials-A review, Chemosphere. 273 (2021) 129677.
https://doi.org/10.1016/j.chemosphere.2021.129677

H. Es-Sahbany, R. Hsissou, M.L. El Hachimi, M. Allaoui, S. Nkhili, M.S. Elyoubi, Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco), Mater. Today Proc. 45 (2021) 7290-7298.
https://doi.org/10.1016/j.matpr.2020.12.1100

G.V.S.S. Mittapalli, S. Kalavathy, A Study on the Use of Alum for Turbidity Removal in Synthetic Water, 3rd Natl. Conf. Water, Environ. Soc. 2 (2016) 263-266

A. Baghvand, A.D. Zand, N. Mehrdadi, A. Karbassi, Optimizing coagulation process for low to high turbidity waters using aluminum and iron salts, Am. J. Environ. Sci. 6 (2010) 442-448.
https://doi.org/10.3844/ajessp.2010.442.448

M.A. Yukselen, J. Gregory, The effect of rapid mixing on the break-up and re-formation of flocs, J. Chem. Technol. Biotechnol. 79 (2004) 782-788.
https://doi.org/10.1002/jctb.1056

N. Akhtar, J. Iqbal, M. Iqbal, Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: Characterization studies, J. Hazard. Mater. (2004).
https://doi.org/10.1016/j.jhazmat.2004.01.002

L. Qi, R. Cheng, H. chen Wang, X. Zheng, G. ming Zhang, G. bai Li, Recycle of alum sludge with PAC (RASP) for drinking water treatment, Desalin. Water Treat. (2011).
https://doi.org/10.5004/dwt.2011.1603

S. Bonilla, D.G. Allen, Cationic proteins for enhancing biosludge dewaterability: A comparative assessment of surface and conditioning characteristics of synthetic polymers, surfactants and proteins, Sep. Purif. Technol. (2018).
https://doi.org/10.1016/j.seppur.2017.08.048

P. Hu, S. Zhuang, S. Shen, Y. Yang, H. Yang, Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant, Water Res. (2021).
https://doi.org/10.1016/j.watres.2020.116578

Z. Lu, Medicament of Water Treatment. Publishing Company of Chemical Industry, Beijing, pp. 100-102., (2002).

B. Bolto, J. Gregory, Organic polyelectrolytes in water treatment, Water Res. (2007).
https://doi.org/10.1016/j.watres.2007.03.012

G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci. 33 (2008) 399-447.
https://doi.org/10.1016/j.progpolymsci.2007.11.001

K.S. Narasiah, A. Vogel, N.N. Kramadhati, Coagulation of turbid waters using Moringa oleifera seeds from two distinct sources, in: Water Sci. Technol. Water Supply, 2002.
https://doi.org/10.2166/ws.2002.0154

E.N. Ali, S.A. Muyibi, H.M. Salleh, M.Z. Alam, M.R.M. Salleh, Production of Natural Coagulant from Moringa Oleifera Seed for Application in Treatment of Low Turbidity Water, J. Water Resour. Prot. (2010).
https://doi.org/10.4236/jwarp.2010.23030

B. Benettayeb, A.;Usman, M.;Tinashe, C.C; Haddou, A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment, Environ. Sci. Pollut. Res. (2022).
https://doi.org/10.1007/s11356-022-19938-w

A. Benettayeb, B. Haddou, New biosorbents based on the seeds, leaves and husks powder of Moringa oleifera for the effective removal of various toxic pollutants, Int. J. Environ. Anal. Chem. 00 (2021) 1-26.
https://doi.org/10.1080/03067319.2021.1963714

R. Boopathy, Factors limiting bioremediation technologies, Bioresour. Technol. 74 (2000) 63-67.
https://doi.org/10.1016/S0960-8524(99)00144-3

D.C. Sobeck, M.J. Higgins, Examination of three theories for mechanisms of cation-induced bioflocculation, Water Res. 36 (2002) 527-538.
https://doi.org/10.1016/S0043-1354(01)00254-8

V. Urbain, J.C. Block, J. Manem, Bioflocculation in activated sludge: an analytic approach, Water Res. 27 (1993) 829-838.
https://doi.org/10.1016/0043-1354(93)90147-A

F. Jorand, F. Boué-Bigne, J.C. Block, V. Urbain, Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances, in: Water Sci. Technol., 1998: pp. 307-315.
https://doi.org/10.2166/wst.1998.0652

J.I. Houghton, J. Quarmby, T. Stephenson, Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer, in: Water Sci. Technol., 2001: pp. 373-379.
https://doi.org/10.2166/wst.2001.0792

T. Nharingo, M. Moyo, Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review, J. Environ. Manage. 166 (2016) 55-72.
https://doi.org/10.1016/j.jenvman.2015.10.005

R. Theodoro, J. D. P., Lenz, G. F., Zara, R. F. & Bergamasco, Coagulants and natural polymers: perspectives for the treatment of water. Plastic and Polymer Technology 2 (3), 55-62, (2013).

J.H. Cota-Sánchez, Nutritional Composition of the Prickly Pear (Opuntia ficus-indica) Fruit, in: Nutr. Compos. Fruit Cultiv., 2015: pp. 691-712.
https://doi.org/10.1016/B978-0-12-408117-8.00028-3

F.M. Goycoolea, A. Cárdenas, Pectins from Opuntia spp.: A short review, J. Prof. Assoc. Cactus Dev. 5 (2003) 17-29.

Villarreal, F., Rojas, P., Arellano, V. and Moreno, J. (1963). Chemical study on six species of cactus (Opuntia spp.). Ciencia Mex.,22: 59-65., (n.d.).

T.K.F.S. Freitas, V.M. Oliveira, M.T.F. de Souza, H.C.L. Geraldino, V.C. Almeida, S.L. Fávaro, J.C. Garcia, Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant, Ind. Crops Prod. 76 (2015) 538-544.
https://doi.org/10.1016/j.indcrop.2015.06.027

S. Abdul Talib, Y.P. Lim, M.S.N. Ismail, S.N.A. Abd- Razak, A.M. Mohd. Mohtar, C.Y. Yin, Turbidity Removalfrom Surface Water and Landfill Leachate Using Cactus Opuntia, IEM Journal 68 (2007) 61-64.
http://dspace.unimap.edu.my/dspace/handle/123456789/13651

D. McGarvie, H. Parolis, The mucilage of Opuntia ficus-indica, Carbohydr. Res. 69 (1979) 171-179.
https://doi.org/10.1016/S0008-6215(00)85762-6

D. McGarvie, H. Parolis, The mucilage of Opuntia ficus-indica. Part 2. The degraded polysaccharide, J. Chem. Soc. Perkin Trans. 1. (1979) 1464-1466.
https://doi.org/10.1039/p19790001464

D. McGarvie, H. Parolis, The acid-labile, peripheral chains of the mucilage of Opuntia ficus-indica, Carbohydr. Res. 94 (1981) 57-65.
https://doi.org/10.1016/S0008-6215(00)85595-0

D. McGarvie, H. Parolis, Methylation analysis of the mucilage of Opuntia ficus-indica, Carbohydr. Res. 88 (1981) 305-314.
https://doi.org/10.1016/S0008-6215(00)85543-3

S. Trachtenberg, A.M. Mayer, Composition and properties of Opuntia ficus-indica mucilage, Phytochemistry. 20 (1981) 2665-2668.
https://doi.org/10.1016/0031-9422(81)85263-6

J. Guo, C. Yang, G. Zeng, Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge, Bioresour. Technol. 143 (2013) 289-297.
https://doi.org/10.1016/j.biortech.2013.06.003

A.L. Buttice, Aggregation of Sediment and Bacteria with Mucilage from the Opuntia ficus-indica Cactus, Ph.D. dissertation, University of South Florida (2012).

B. Johnson, Treatment of Tannery Wastewater Using Natural Coagulants, Natl. Syst. Innov. Towar. a Theory Innov. Interact. Learn. 2 (2010) 23-46.
https://doi.org/10.7135/UPO9781843318903.003

T. Pichler, K. Young, N. Alcantar, Eliminating turbidity in drinking water using the mucilage of a common cactus, Water Sci. Technol. Water Supply. 12 (2012) 179-186.
https://doi.org/10.2166/ws.2012.126

S.M. Miller, E.J. Fugate, V.O. Craver, J.A. Smith, J.B. Zimmerman, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment, Environ. Sci. Technol. 42 (2008) 4274-4279.
https://doi.org/10.1021/es7025054

F. Renault, B. Sancey, P.M. Badot, G. Crini, Chitosan for coagulation/flocculation processes - An eco-friendly approach, Eur. Polym. J. 45 (2009) 1337-1348.
https://doi.org/10.1016/j.eurpolymj.2008.12.027

J.Q. Jiang, Development of coagulation theory and pre-polymerized coagulants for water treatment, Sep. Purif. Methods. 30 (2001) 127-141.
https://doi.org/10.1081/SPM-100102986

N. Fedala, H. Lounici, N. Drouiche, N. Mameri, M. Drouiche, Physical parameters affecting coagulation of turbid water with Opuntia ficus-indica cactus, Ecol. Eng. 77 (2015) 33-36.
https://doi.org/10.1016/j.ecoleng.2015.01.007

T. Nharingo, M.T. Zivurawa, U. Guyo, Exploring the use of cactus Opuntia ficus indica in the biocoagulation-flocculation of Pb(II) ions from wastewaters, Int. J. Environ. Sci. Technol. 12 (2015) 3791-3802.
https://doi.org/10.1007/s13762-015-0815-0

M. V. Jadhav, Y.S. Mahajan, Assessment of feasibility of natural coagulants in turbidity removal and modeling of coagulation process, Desalin. Water Treat. 52 (2014) 5812-5821.
https://doi.org/10.1080/19443994.2013.816875

S. Vishali, R. Karthikeyan, Cactus opuntia (ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent, Desalin. Water Treat. 56 (2015) 1489-1497.
https://doi.org/10.1080/19443994.2014.945487

A. Aygun, T. Yilmaz, Improvement of Coagulation-Flocculation Process for Treatment of Detergent Wastewaters Using Coagulant Aids, Int. J. Chem. Environ. Eng. 1 (2010) 97-101.

D.I. Fox, T. Pichler, D.H. Yeh, N.A. Alcantar, Removing heavy metals in water: The interaction of cactus mucilage and arsenate (As (V)), Environ. Sci. Technol. 46 (2012) 4553-4559.
https://doi.org/10.1021/es2021999

N. Gandhi, D. Sirisha, K.B.C. Sekhar, Biodepollution of paint manufacturing industry waste water containing chromium by using coagulation process, J. Arts, Sci. Commer. 4 (2013) 110-118.

B. Mounir, Z. Abdeljalil, A. Abdellah, Comparison of the Efficacy of Two Bioflocculants in Water Treatment, Int. J. Sci. Eng. Technol. 737 (2014) 2277-1581.

B. Bouras, T. Hocine, K. Benhabib, R. Zair, A. Mansri, L. Tennouga, K. Guemra, Turbidity removal from bentonite suspension by coagulation/flocculation using modified p-phenylenediamine/poly(acrylamide), Rev. Roum. Chim. 64 (2021).
https://doi.org/10.33224/rrch/2019.64.11.07

M. Al-Sameraiy, A Novel Water Pretreatment Approach for Turbidity Removal Using Date Seeds and Pollen Sheath, J. Water Resour. Prot. 04 (2012).
https://doi.org/10.4236/jwarp.2012.42010

H. Betatache, A. Aouabed, N. Drouiche, H. Lounici, Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus Indica) juice, Ecol. Eng. 70 (2014) 465-469.
https://doi.org/10.1016/j.ecoleng.2014.06.031

A. Benettayeb, A. Morsli, E. Guibal, R. Kessas, New derivatives of urea-grafted alginate for improving the sorption of mercury ions in aqueous solutions, Mater. Res. Express. 8 (2021) 035303.
https://doi.org/10.1088/2053-1591/abeabc

M. Chaudhuri, P.S.A.B. Khairuldin, Coagulation-clarification of turbid coloured water by natural coagulant (moringa oleifera) seed extract, Nat. Environ. Pollut. Technol. 8 (2009).

A. Mishra, M. Bajpai, Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide, J. Hazard. Mater. 118 (2005).
https://doi.org/10.1016/j.jhazmat.2004.11.003

A. Mishra, R. Srinivasan, M. Bajpai, R. Dubey, Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater, Colloid Polym. Sci. 282 (2004).
https://doi.org/10.1007/s00396-003-1003-1

J. Gregory, J. Duan, Hydrolyzing metal salts as coagulants, Pure Appl. Chem. 73 (2001) 2017-2026.
https://doi.org/10.1351/pac200173122017

J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH's Water Treatment: Principles and Design: Third Edition, 2012.
https://doi.org/10.1002/9781118131473

A. Cárdenas, F.M. Goycoolea, M. Rinaudo, On the gelling behaviour of "nopal" (Opuntia ficus indica) low methoxyl pectin, Carbohydr. Polym. 73 (2008).
https://doi.org/10.1016/j.carbpol.2007.11.017

M.E. Rodríguez-Garcia, C. De Lira, E. Hernández-Becerra, M.A. Cornejo-Villegas, A.J. Palacios-Fonseca, I. Rojas-Molina, R. Reynoso, L.C. Quintero, A. Del-Real, T.A. Zepeda, C. Muñoz-Torres, Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation, Plant Foods Hum. Nutr. 62 (2007) 107-112.
https://doi.org/10.1007/s11130-007-0049-5

R. Ramírez-Orduña, R.G. Ramírez, H. González-Rodríguez, G.F.W. Haenlein, Mineral content of browse species from Baja California Sur, Mexico, Small Rumin. Res. 57 (2005) 1-10.
https://doi.org/10.1016/j.smallrumres.2004.03.004

O. Bouaouine, I. Bourven, F. Khalil, M. Baudu, Efficiency of a coagulation-flocculation process using opuntia ficus-indica for the treatment of a textile effluent, Desalin. Water Treat. 240 (2021).
https://doi.org/10.5004/dwt.2021.27650

J. M. Douglas et al., Physicochemicol Processes for Woter Quality Control, (1973) 79065.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize