Open Access Open Access  Restricted Access Subscription or Fee Access

Mix Design Formulation and Stress-Strain Relationship of Fly Ash-Based Workable Geopolymer Concrete: an Experimental Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v13i4.21515

Abstract


Geopolymer concrete is known as a concrete made by one of cementitious materials in order to reduce carbon dioxide (CO2) emissions for sustainable development purposes. Instead of using Portland cement for a mortar matrix, mineral residues as a result of power plant processes so-called fly ash are used to replace completely the existence of cement in a concrete structure. A large amount of chemical compounds such as silicon dioxide or silica (SiO2), aluminum oxide (Al2O3) and iron(III) oxide or ferric oxide (Fe2O3) contained in fly ash can substitute Portland cement as a chemical binder in concrete materials. Fly ash Class F which contains more than 70% of SiO2, Al2O3 and Fe2O3 in total with less than 10% of calcium oxide (CaO) has been investigated yielding compressive strengths similar to or even higher than the conventional concrete using Portland cement. In order to obtain a strong chemical binder between aggregates and fly ash, an activator containing a mixture of sodium hydroxide (NaOH) and sodium metasilicate (Na2SiO3) is applied here, where two types of Na2SiO3 (Be52 and Be58) are employed. Further, workability is investigated by comparing Na2SiO3 type Be52 and Na2SiO3 type Be58, with maintaining an acceptable compressive strength. Then the results of proportional mix design variations for geopolymer concrete are analyzed in terms of the modulus of elasticity and the Poisson’s ratio as well as its stress-strain relationship compared to the conventional concrete.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Fly Ash-Based Geopolymer Concrete; Mix Design; Workability; Compressive Strength; Stress-Strain Relationship

Full Text:

PDF


References


M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production - present and future, Cement and Concrete Research, Vol. 41 : 642-650, 2011.
https://doi.org/10.1016/j.cemconres.2011.03.019

I. Amato, Green cements : Concrete colutions, Nature, Vol. 494 : 300-301, 2013.
https://doi.org/10.1038/494300a

M. B. Ali, R. Saidur, M. S. Hossain, A review on emission analysis in cement industries, Renewable and Sustainable Energy Reviews, Vol. 15 : 2252-2261, 2011.
https://doi.org/10.1016/j.rser.2011.02.014

W. Shen, Y. Liu, B. Yan, J. Wang, P. He, C. Zhou, X. Huo, W. Zhang, G. Xu, Q. Ding, Cement industry of china: Driving force, environment impact and sustainable development, Renewable and Sustainable Energy Reviews, Vol. 75 : 618-628, 2017.
https://doi.org/10.1016/j.rser.2016.11.033

M. Uwasu, K. Hara, H. Yabar, World cement production and environmental implications, Environmental Development, Vol. 10: 36-47, 2014.
https://doi.org/10.1016/j.envdev.2014.02.005

J. Li, P. Tharakan, D. Macdonald, X. Liang, Technological, economic and financial prospects of carbon dioxide capture in the cement industry, Energy Policy, Vol. 61 : 1377-1387, 2013.
https://doi.org/10.1016/j.enpol.2013.05.082

K. Vatopoulos, E. Tzimas, Assessment of CO2 capture technologies in cement manufacturing process, Journal of Cleaner Production, Vol. 32 : 251-261, 2012.
https://doi.org/10.1016/j.jclepro.2012.03.013

ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM International, 2019).

Y. Huang, M. Han, The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, Journal of Hazardous Materials, Vol. 193 : 90-94, 2011.
https://doi.org/10.1016/j.jhazmat.2011.07.029

K. Pimraksa, P. Chindaprasirt, A. Rungchet, K. Sagoe-Crentsil, T. Sato, Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios, Materials Science and Engineering, Vol. A 528 : 6616-6623, 2011.
https://doi.org/10.1016/j.msea.2011.04.044

D. Feng, J.L. Provis, J.S.J. van Deventer. Thermal activation of albite for the synthesis of one-part mix geopolymers, Journal of the American Ceramic Society, Vol. 95 : 565-572, 2012.
https://doi.org/10.1111/j.1551-2916.2011.04925.x

J. Davidovits, Chemistry of Geopolymeric Systems Terminology, Proceedings of the International Conference on Geopolymers, pp. 9-40, France, 1999.

H. Xu, J.S.J. van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, Vol. 59 : 247-266, 2000.
https://doi.org/10.1016/S0301-7516(99)00074-5

J. Davidovits, Properties of geopolymer cements, Proceedings First International Conference on Alkaline Cements and Concretes, pp. 131-149, Ukraine, 1994.

J. Davidovits, 30 years of successes and failure in geopolymer applications: Market trends and potential breakthroughs, Proceedings of the Geopolymer Conference, Australia, 2002.

J. Davidovits, Geopolymer Chemistry and Applications, 5th Edition (Geopolymer Institute, Saint-Quentin, France, 2020).

A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, Vol. 29 : 1323-1329, 1999.
https://doi.org/10.1016/S0008-8846(98)00243-9

Dawood, E., Mohammed, W., Characteristics of Green Mortar Containing Fly Ash with the Addition of Different Plasticizers, (2021) International Review of Civil Engineering (IRECE), 12 (3), pp. 167-175.
https://doi.org/10.15866/irece.v12i3.19541

Q. Fu, W. Xu, X. Zhao, M. Bu, Q. Yuan, D. Niu, The microstructure and durability of fly ash-based geopolymer concrete: A review, Ceramics International, Vol. 47 : 29550-29566, 2021.
https://doi.org/10.1016/j.ceramint.2021.07.190

J. Davidovits, J.L. Sawyer, Early high-strength mineral polymer, US Patent No. US4509985A, 1985.

B. Singh, G. Ishwarya, M. Gupta, S.K. Bhattacharyya, Geopolymer concrete: A review of some recent developments, Construction and Building Materials, Vol. 85 : 78-90, 2015.
https://doi.org/10.1016/j.conbuildmat.2015.03.036

Formisano, A., Galzerano, B., Durante, M., Marino, O., Liguori, B., Mechanical Response of Short Fiber Reinforced Fly Ash Based Geopolymer Composites, (2018) International Review of Mechanical Engineering (IREME), 12 (6), pp. 485-491.
https://doi.org/10.15866/ireme.v12i6.14826

P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, Journal of Material Science, Vol. 42 : 2917-2933, 2007.
https://doi.org/10.1007/s10853-006-0637-z

C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements, Cement and Concrete Research, Vol. 40 : 1341-1349, 2010.
https://doi.org/10.1016/j.cemconres.2010.03.020

J. Davidovits, Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis, Vol. 37 : 1633-1656, 1991.
https://doi.org/10.1007/BF01912193

Salih, M., Ahmed, S., Mix Design for Sustainable High Strength Concrete by Using GGBS and Micro Silica as Supplementary Cementitious Materials, (2020) International Review of Civil Engineering (IRECE), 11 (1), pp. 45-51.
https://doi.org/10.15866/irece.v11i1.17784

Alwash, M., Alwash, J., Jassim, H., Impact of Different Curing Techniques on Some Mechanical Properties of Self-Compacting Concrete Containing Silica Fume, (2022) International Review of Civil Engineering (IRECE), 13 (3), pp. 208-215.
https://doi.org/10.15866/irece.v13i3.21494

B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cement and Concrete Research, Vol. 41 : 1244-1256, 2011.
https://doi.org/10.1016/j.cemconres.2010.12.001

T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, One-part alkali-activated materials: A review, Cement and Concrete Research, Vol. 103 : 21-34, 2018.
https://doi.org/10.1016/j.cemconres.2017.10.001

J.L. Provis, J.S.J. van Deventer, Geopolymers: Structure, Processing, Properties and Application (Woodhead Publishing Limited, Cambridge, England, 2009).

C.D. Atiş, C. Bilim, Ö. Çelik, O. Karahan, Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, Vol. 23 : 548-555, 2009.
https://doi.org/10.1016/j.conbuildmat.2007.10.011

Purwanto, P., Han, A., Ekaputri, J., Nuroji, N., Prasetya, B., Self-Compacting-Geopolymer-Concrete (SCGC) Retrofitted Haunch, (2021) International Journal on Engineering Applications (IREA), 9 (4), pp. 180-189.
https://doi.org/10.15866/irea.v9i4.20652

Mangi, S., Memon, Z., Khahro, S., Memon, R., Memon, A., Potentiality of Industrial Waste as Supplementary Cementitious Material in Concrete Production, (2020) International Review of Civil Engineering (IRECE), 11 (5), pp. 214-221.
https://doi.org/10.15866/irece.v11i5.18779

C. Gunasekara, D. Law, S. Bhuiyan, S. Setunge, L. Ward, Chloride induced corrosion in different fly ash based geopolymer concretes, Construction and Building Materials, Vol. 200 : 502-513, 2019.
https://doi.org/10.1016/j.conbuildmat.2018.12.168

K. Kupwade-Patil, E.N. Allouche, Examination of chloride-induced corrosion in reinforced geopolymer concretes, Journal of Materials in Civil Engineering, Vol. 25 (Issue 10) : 1465-1476, 2013.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000672

A. Noushini, A. Castel, J. Aldred, A. Rawal, Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete, Cement and Concrete Composites, Vol. 105 : 103290, 2020.
https://doi.org/10.1016/j.cemconcomp.2019.04.006

T. Yang, X. Yao, Z. Zhang, Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF), Construction and Building Materials, Vol. 69 : 109-115, 2014.
https://doi.org/10.1016/j.conbuildmat.2014.07.031

T. Bakharev, Resistance of geopolymer materials to acid attack, Cement and Concrete Research, Vol. 35 (Issue 4) : 658-670, 2005.
https://doi.org/10.1016/j.cemconres.2004.06.005

M.A.M. Ariffin, M.A.R. Bhutta, M.W. Hussin, M.M. Tahir, N. Aziah, Sulfuric acid resistance of blended ash geopolymer concrete, Construction and Building Materials, Vol. 43 : 80-86, 2013.
https://doi.org/10.1016/j.conbuildmat.2013.01.018

T. Bakharev, Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cement and Concrete Research, Vol. 35 (Issue 6) : 1233-1246, 2005.
https://doi.org/10.1016/j.cemconres.2004.09.002

M.A.R. Bhutta, W.M. Hussin, M. Azreen, M.M. Tahir, Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash, Journal of Materials in Civil Engineering, Vol. 25 (Issue 10) : 1465-1476, 2013.

I. Ismail, S.A. Bernal, J.L. Provis, S. Hamdan, J.S.J. van Deventer, Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure, Materials and Structures, Vol. 46 : 361-373, 2013.
https://doi.org/10.1617/s11527-012-9906-2

H.E. Elyamany, A.E.M.A. Elmoaty, A.M. Elshaboury, Magnesium sulfate resistance of geopolymer mortar, Construction and Building Materials, Vol. 184 : 111-127, 2018.
https://doi.org/10.1016/j.conbuildmat.2018.06.212

D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, On the development of fly ash-based geopolymer concrete, ACI Materials Journal, Vol. 101 : 467-472, 2004.
https://doi.org/10.14359/13485

S.A. Bernal, J.L. Provis, B. Walkley, R.S. Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement and Concrete Research, Vol. 52 : 127-144, 2013.
https://doi.org/10.1016/j.cemconres.2013.06.007

Z. Li, S. Li, Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete, Construction and Building Materials, Vol. 163 : 668-680, 2018.
https://doi.org/10.1016/j.conbuildmat.2017.12.127

K. Pasupathy, M. Berndt, A. Castel, J. Sanjayan, R. Pathmanathan. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years, Construction and Building Materials, Vol. 125 : 661-669, 2016.
https://doi.org/10.1016/j.conbuildmat.2016.08.078

M.S. Badar, K. Kupwade-Patil, S.A. Bernal, J.L. Provis, E.N. Allouche, Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes, Construction and Building Materials, Vol. 61 : 79-89, 2014.
https://doi.org/10.1016/j.conbuildmat.2014.03.015

R. Zhao, Y. Yuan, Z. Cheng, T. Wen, J. Li, F. Li, Z.J. Ma, Freeze-thaw resistance of Class F fly ash-based geopolymer concrete, Construction and Building Materials, Vol. 222 : 474-483, 2019.
https://doi.org/10.1016/j.conbuildmat.2019.06.166

M. Zhao, G. Zhang, K.W. Htet, M. Kwon, C. Liu, Y. Xu, M. Tao, Freeze-thaw durability of red mud slurry-class F fly ash-based geopolymer: Effect of curing conditions, Construction and Building Materials, Vol. 215 : 381-390, 2019.
https://doi.org/10.1016/j.conbuildmat.2019.04.235

Z. Zhang, J.L. Provis, A. Reid, H. Wang, Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence, Cement and Concrete Research, Vol. 64 : 30-41, 2014.
https://doi.org/10.1016/j.cemconres.2014.06.004

Y. Ma, J. Hu, G. Ye, The pore structure and permeability of alkali activated fly ash, Fuel, Vol. 104 : 771-780, 2013.
https://doi.org/10.1016/j.fuel.2012.05.034

W.K.W. Lee, J.S.J. van Deventer, The interface between natural siliceous aggregates and geopolymers, Cement and Concrete Research, Vol. 34 (Issue 2) : 195-206, 2004.
https://doi.org/10.1016/S0008-8846(03)00250-3

ASTM C33, Standard Specification for Concrete Aggregates (ASTM International, 2013).

D. Hardjito, B.V. Rangan, Development and properties of low-calcium fly ash-based geopolymer concrete, Research Report-GC1, Curtin University of Tecnology, Perth, Australia, 2005.

M.M.A. Abdullah, H. Kamarudin, H. Mohammed, I.K. Nizar, A.R. Rafiza, Y. Zarina, The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly ash-based geopolymer, Advanced Materials Research, Vol. 328-330 : 1475-1482, 2011.
https://doi.org/10.4028/www.scientific.net/AMR.328-330.1475

A.M.M. Al Bakri, H. Kamarudin, I.K. Nizar, M. Binhussain, Y. Zarina, A.R. Rafiza, Correlation between Na2SiO3/NaOH ratio and fly ash/alkaline activator ratio to the strength of geopolymer, Advanced Materials Research, Vol. 341-342 : 189-193, 2012.
https://doi.org/10.4028/www.scientific.net/AMR.341-342.189

A.M.M. Al Bakri, H. Kamarudin, I.K. Nizar, A.V. Sandu, M. Binhussain, Y. Zarina, A.R. Rafiza, Design, processing and characterization of fly ash-based geopolymers for lightweight concrete application, Revista de Chimie, Vol. 64 (Issue 4) : 382-387, 2013.

J. Temuujin, A. Minjigmaa, B. Davaabal, U. Bayarzul, A. Ankhtuya, T. Jadambaa, K.J.D. MacKenzie, Utilization of radioactive high-calcium Mongolian fly ash for the preparation of alkali-activated geopolymers for safe use as construction materials, Ceramics International, Vol. 40 (Issue 10) : 16475-16483, 2014.
https://doi.org/10.1016/j.ceramint.2014.07.157

M.Z. Lakhssassi, S. Alehyen, M. El Alouani, M. Taibi, The effect of aggressive environments on the properties of a low calcium fly ash based geopolymer and the ordinary Portland cement pastes, Materials Today: Proceedings, Vol. 13 (Issue 3) : 1169-1177, 2019.
https://doi.org/10.1016/j.matpr.2019.04.085

D.S. Perera, O. Uchida, E.R. Vance, K.S. Finnie, Influence of curing schedule on the integrity of geopolymers, Journal of Material Sciences, Vol. 42 : 3099-3106, 2007.
https://doi.org/10.1007/s10853-006-0533-6

J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal, Vol. 89 : 63-73, 2002.
https://doi.org/10.1016/S1385-8947(02)00025-6

Federation Internationale du Beton (fib), Model Code for Concrete Structures (Ersnt & Sohn A Wiley Brand, 2010).

E. Hognestad, A Study of Combined Bending and Axial Load in Reinforced Concerete Members (University of Illnois Engineering Experiment Station Bulletin Series No. 399, 1951).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize