Open Access Open Access  Restricted Access Subscription or Fee Access

Water Flow Simulation with Computational Fluid Dynamics (CFD): a Review Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v13i1.20958

Abstract


Computational Fluid Dynamics (CFD) provides a numerical approximation to solve the governing equation of fluid movement. Four stages are required to analyse fluid problems through CFD techniques. The first one is to write the mathematical equation that should describe the fluid flow, which is set as a partial differential equation. The second stage is the discretisation of fluid flow mathematical equations in order to build the equations numerical analogue. The third stage is to divide the domain of fluid into small elements or cells. Finally, a specific problem equation is solved using the initial and the boundary conditions. The solver of problems usually is using the ether Finite Volume Method (FVM), the Finite Element Method (FEM), or the Finite Difference Method (FDM). The technical approach in this study provides students, researchers, and engineer a quick, comprehensive, and up-to-date tool and reference on the fundamentals, governing equation, and turbulence model applied in Computational fluid dynamics.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Computational Fluid Dynamics; Hadith Dam; Navier-Stokes Equation; Turbulence Model

Full Text:

PDF


References


O. S. Abdullah, A. H. Kamel, and W. H. Khalil, Numerical and Experimental Modelling of Small Hydropower Turbine, J. Adv. Res. Fluid Mech. Therm. Sci., vol. 80, no. 1, pp. 112-127, 2021.
https://doi.org/10.37934/arfmts.80.1.112127

Y. Wei, The development and application of CFD technology in mechanical engineering, IOP Conf. Ser. Mater. Sci. Eng., vol. 274, no. 1, 2017.
https://doi.org/10.1088/1757-899X/274/1/012012

E. E. Khalil, CFD history and applications, CFD Lett., vol. 4, no. 2, pp. 43-46, 2012.

D. B. Launder, B.E. and Spalding, The Numerical Computation of Turbulent Flows, Comput. Methods App, pp. 269-275, 1974.
https://doi.org/10.1016/0045-7825(74)90029-2

N. R. B. Olsen and S. Stokseth, Three-dimensional numerical modelling of water flow in a river with large bed roughness, J. Hydraul. Res., vol. 33, no. 4, pp. 571-581, 1995.
https://doi.org/10.1080/00221689509498662

N. R. B. Olsen and H. M. Kjellesvig, Three-dimensional numerical flow modelling for estimation of spillway capacity, J. Hydraul. Res., vol. 36, no. 5, pp. 775-784, 1998.
https://doi.org/10.1080/00221689809498602

B. M. Savage and M. C. Johnson, Flow over ogee spillway: Physical and numerical model case study, J. Hydraul. Eng., vol. 127, no. 8, pp. 640-649, 2001.
https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)

D. Ho, K. Boyes, S. Donohoo, and B. Cooper, Numerical flow analysis for spillways, Ancold Bull., pp. 127-138, 2004.

D. G. Kim and J. H. Park, Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model, KSCE J. Civ. Eng., vol. 9, no. 2, pp. 161-169, 2005.
https://doi.org/10.1007/BF02829067

E. Lesleighter, B. McPherson, K. Riddette, and J. Williams, Modelling procedures used for the spillway upgrade for Lake Manchester Dam, ANCOLD Proc. Tech. Groups, Aust., 2008.

H. R. Vosoughifar and A. R. Daneshkhah, Numerical Evaluating of effective and behavior of balancing reservoir of water hummer on water tunnels lining to turbine in concrete dams, J. Water Sci. Res., vol. 2, no. 1, 2010.

G. Duró, M. De Dios, A. López, and S. O. Liscia, Physical modeling and CFD comparison: case study of a hydro-combined power station in spillway mode, 4th International Junior Researcher and Engineer Workshop on Hydraulic Structures, IJREWHS'12, B. TULLIS and R. JANSSEN (Eds.), Utah State University, Logan, UT, USA, 2012.

C. G. Ninot et al., Experimental and Numerical Study of a Chute Spillway, in Proceedings of the Second International Dam World Conference, Lisbon, Portugal, 2015, pp. 21-24.

A. I. Rajaa, A. Kamel, Performance Study of Fluent-2D and Flow-3D Platforms in CFD Modeling of a Flow Pattern Over Ogee Spillway Performance Study of Fluent-2D and Flow-3D Platforms in the CFD Modeling of a Flow Pattern Over Ogee Spillway, Anbar Journal of Engineering Science (2020) 317-328.

D. Gessler, CFD modeling of spillway performance, in Impacts of Global Climate Change, 2005, pp. 1-10.
https://doi.org/10.1061/40792(173)398

K. E. Fadaei and G. A. Barani, Numerical simulation of flow over spillway based on the CFD method, Scientia Iranica A (2014) 21(1), 91-97.

E. Nohani, "Retracted: Numerical Simulation of the Flow Pattern on Morning Glory Spillways," Int. J. Life Sci., vol. 9, no. 4, pp. 28-31, 2015.
https://doi.org/10.3126/ijls.v9i4.12671

S. Dehdar-Behbahani and A. Parsaie, Numerical modeling of flow pattern in dam spillway's guide wall. Case study: Balaroud dam, Iran, Alexandria Eng. J., vol. 55, no. 1, pp. 467-473, 2016.
https://doi.org/10.1016/j.aej.2016.01.006

A. Parsaie, S. Dehdar-Behbahani, and A. H. Haghiabi, Numerical modeling of cavitation on spillway's flip bucket, Front. Struct. Civ. Eng., vol. 10, no. 4, pp. 438-444, 2016.
https://doi.org/10.1007/s11709-016-0337-y

J. R. Mohammed, B. M. A. Noori, and I. A. Hussein, Modeling of the Hydraulic Performance of Ogee Spillway Using Computational Fluid Dynamics (Cfd), J. Univ. Duhok, vol. 20, no. 1, pp. 638-653, 2017.
https://doi.org/10.26682/sjuod.2017.20.1.56

A. Parsaie, A. Moradinejad, and A. H. Haghiabi, Numerical modeling of flow pattern in spillway approach channel, Jordan J. Civ. Eng., vol. 12, no. 1, pp. 1-9, 2018.

R. Daneshfaraz, O. Minaei, J. Abraham, S. Dadashi, and A. Ghaderi, 3-D Numerical simulation of water flow over a broad-crested weir with openings, ISH J. Hydraul. Eng., vol. 00, no. 00, pp. 1-9, 2019.
https://doi.org/10.1080/09715010.2019.1581098

V. H. P. de Morais, T. Z. Gireli, and P. Vatavuk, Numerical and experimental models applied to an ogee crest spillway and roller bucket stilling basin, Rev. Bras. Recur. Hidricos, vol. 25, pp. 1-15, 2020.
https://doi.org/10.1590/2318-0331.252020190005

M. C. Johnson and B. M. Savage, Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater, J. Hydraul. Eng., vol. 132, no. 12, pp. 1353-1357, 2006.
https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1353)

J. Tu, G. H. Yeoh, and C. Liu, Computational fluid dynamics: a practical approach. Butterworth-Heinemann, 2018.

M. Freitas, É. Favre, P. Léger, and L. J. Pedroso, Stability evaluation of overtopped hydraulic structures using computational fluid dynamics, Can. J. Civ. Eng., vol. 48, no. 3, pp. 341-346, 2021.
https://doi.org/10.1139/cjce-2019-0287

Chen L, Wu B. Research Progress in Computational Fluid Dynamics Simulations of Membrane Distillation Processes: A Review. Membranes. 2021; 11(7):513.
https://doi.org/10.3390/membranes11070513

T. H. Thabet, S., & Thabit, Computational Fluid Dynamics: Science of the Future, Int. J. Res. Eng., vol. 5, no. 6, pp. 430-433, 2018.
https://doi.org/10.21276/ijre.2018.5.6.2

A. S. Yadav and J. L. Bhagoria, Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach, Renew. Sustain. Energy Rev., vol. 23, pp. 60-79, 2013.
https://doi.org/10.1016/j.rser.2013.02.035

Orjuela Abril, S., Acevedo, C., Cardenas Gutierrez, J., Computational Fluid Dynamics Analysis of Combined Cycle Power Plant Heat Exchanger with OpenFOAM® Software, (2020) International Review on Modelling and Simulations (IREMOS), 13 (5), pp. 319-328.
https://doi.org/10.15866/iremos.v13i5.18891

Aouimer, Y., Boutchicha, D., Hamoudi, B., Numerical and Experimental Study of Fluid-Structure Interaction of a Marine Propeller, (2020) International Review of Mechanical Engineering (IREME), 14 (5), pp. 282-289.
https://doi.org/10.15866/ireme.v14i5.17582

J. F. Wendt, Computational fluid dynamics: an introduction. Springer Science & Business Media, 2008.

W. Y. Tey, A. Yutaka, C. S. Nor Azwadi, and R. Z. Goh, Governing equations in computational fluid dynamics: Derivations and a recent review, Prog. Energy Environ., vol. 1, no. December, pp. 1-19, 2017.

T. Holzmann, Mathematics, Numerics, Derivations and OpenFOAM, Config. Distrib. Syst. 1992., Int. Work., no. July, pp. 68-79, 2017.

A. A. Mokashi and P. S. Hirpurkar, Hydraulic scaling and similitude from model to prototype, Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 10, pp. 390-392, 2019.
https://doi.org/10.35940/ijrte.B1066.0982S1019

P. Grivalszki, G. Fleit, S. Baranya, and J. Józsa, Assessment of CFD model performance for flows around a hydraulic structure of complex geometry, Period. Polytech. Civ. Eng., vol. 65, no. 1, pp. 109-119, 2021.
https://doi.org/10.3311/PPci.16709

J. Liu, X., Zhang, Computational Fluid Dynamics, ASCE Publ. Am. Soc. Civ. Eng. Reston, VA, 2019.

I. ANSYS, ANSYS Fluent Theory Guide. U.S.A.: ANSYS, Inc. is certified to ISO 9001:2008, 2013.

M. Allahyari, V. Esfahanian, and K. Yousefi, The effects of grid accuracy on flow simulations: A numerical assessment, Fluids, vol. 5, no. 3, pp. 1-21, 2020.
https://doi.org/10.3390/fluids5030110

M. H. Zawawi et al., A review: Fundamentals of computational fluid dynamics (CFD), AIP Conf. Proc., vol. 2030, 2018.
https://doi.org/10.1063/1.5066893

T. Glatzel et al., Computational fluid dynamics (CFD) software tools for microfluidic applications - A case study, Comput. Fluids, vol. 37, no. 3, pp. 218-235, 2008.
https://doi.org/10.1016/j.compfluid.2007.07.014

I. B. (Wester. V. U. Celik, Introductory turbulence modeling, West. Virginia Univ. Cl. Notes, no. December, p. 94, 1999, [Online]. Available:

http://www.fem.unicamp.br/~im450/palestras&artigos/ASME_Tubulence/cds13workbook.pdf

S. Meng, X. Li, X. Yan, L. Wang, H. Zhang, and Y. Cao, Turbulence models for single phase flow simulation of cyclonic flotation columns, Minerals, vol. 9, no. 8, 2019.
https://doi.org/10.3390/min9080464

R. F. Carvalho, C. M. Lemos, and C. M. Ramos, Numerical computation of the flow in hydraulic jump stilling basins, J. Hydraul. Res., vol. 46, no. 6, pp. 739-752, 2008.
https://doi.org/10.1080/00221686.2008.9521919

U. Unnikrishnan, X. Wang, S. Yang, and V. Yang, Subgrid scale modeling of the equation of state for turbulent flows under supercritical conditions, 53rd AIAA/SAE/ASEE Jt. Propuls. Conf. 2017, no. July, 2017.
https://doi.org/10.2514/6.2017-4855

N. Viti, D. Valero, and C. Gualtieri, Numerical simulation of hydraulic jumps. part 2: Recent results and future outlook, Water (Switzerland), vol. 11, no. 1, pp. 1-18, 2018.
https://doi.org/10.3390/w11010028

B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo, and B. Van Wachem, Computational fluid dynamics for engineers, vol. 9781107018. 2011.
https://doi.org/10.1017/CBO9781139093590

P. A. Davidson, Turbulence: an introduction for scientists and engineers. Oxford university press, 2015.
https://doi.org/10.1093/acprof:oso/9780198722588.001.0001

G. Alfonsi, Reynolds-averaged Navier-Stokes equations for turbulence modeling, Appl. Mech. Rev., vol. 62, no. 4, pp. 1-20, 2009.
https://doi.org/10.1115/1.3124648

M. C. Aydin, E. Isik, and A. E. Ulu, Numerical modeling of spillway aerators in high-head dams, Appl. Water Sci., vol. 10, no. 1, pp. 1-9, 2020.
https://doi.org/10.1007/s13201-019-1126-2

A. Yildiz, A. Yarar, S. Y. Kumcu, and A. I. Marti, Numerical and ANFIS modeling of flow over an ogee-crested spillway, Appl. Water Sci., vol. 10, no. 4, 2020.
https://doi.org/10.1007/s13201-020-1177-4

U. Jahad, R. Al-Ameri, L. Chua, and S. Das, Investigating the effects of geometry on the flow characteristics and energy dissipation of stepped spillway using two-dimensional flow modelling, Proc. - Int. Assoc. Hydro-Environment Eng. Res. (IAHR)-Asia Pacific Div. Congr. Multi-Perspective Water Sustain. Dev. IAHR-APD 2018, vol. 1, pp. 289-296, 2018.

D. B. Launder, B.E. and Spalding, The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269-289, 1974.
https://doi.org/10.1016/0045-7825(74)90029-2

A. S. Tsan-Hsing Shih, William W. Liou and Z. Y. and J. Zhu, Transitional dynamics of freely falling discs, Comput. fluids, vol. 24, no. 3, pp. 227-238, 1995.
https://doi.org/10.1016/0045-7930(94)00032-T

V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., vol. 1, no. 1, pp. 3-51, 1986.
https://doi.org/10.1007/BF01061452

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., vol. 39, no. 1, pp. 201-225, 1981.
https://doi.org/10.1016/0021-9991(81)90145-5

M. R. Freitas, CFD modelling for the study of structural stability of dams and spillways subject to overtopping, Master Thesis. University of Brasilia . 2019.

L. C. Malan, A. G. Malan, S. Zaleski, and P. G. Rousseau, A geometric VOF method for interface resolved phase change and conservative thermal energy advection, J. Comput. Phys., vol. 426, p. 109920, 2021.
https://doi.org/10.1016/j.jcp.2020.109920

A. Titolo, Use of time-series ndwi to monitor emerging archaeological sites: Case studies from iraqi artificial reservoirs, Remote Sens., vol. 13, no. 4, pp. 1-40, 2021.
https://doi.org/10.3390/rs13040786


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize