Open Access Open Access  Restricted Access Subscription or Fee Access

Novel Nonlinear Model for Analysis of RC Slabs with Various Boundary Conditions Under Monotonic Loading


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v9i6.15558

Abstract


This paper presents a novel and efficient nonlinear model developed for analysis of reinforced concrete slabs under monotonic loading. The model accounts for the presence of reinforcing steel and its influence on the micro-cracks formation and propagation; as well as tension stiffening due to steel-concrete residual bond. In the finite element analysis (FEA), the principal barrier encountered in large-scale parametric investigations, with thousands of potential parameter’s combinations and modeling executions, it is essential to adopt the fastest and most accurate FEA model. In this regard, the use of shell elements for nonlinear reinforced concrete slab modeling was found to yield superior, far more-efficient solutions that can bring within seconds a higher accuracy than a time consuming, poorly calibrated solid models. Linear-elastic behavior is described with the constant linear-statics moment trajectories, which represent the absence of material and section properties deterioration and nonlinear responses. In contrast, the proposed nonlinear FEA study investigated the material’s fourth dimension behavior and model synthesis, calibration, optimization, and efficiency. A summary of the suggested parameters for the proposed time-efficient nonlinear modeling of reinforced concrete slabs under monotonic loading is introduced. It is extremely valuable for large-scale parametric investigations of slabs nonlinearity under monotonic loading up to failure in which the proposed model was compared with many models; all revealing its superior accuracy.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Nonlinear; Model; Slabs; Monotonic Loading; Moment Trajectories

Full Text:

PDF


References


L. Euler, De motu vibratorio tympanorum (On the Motion of Vibrations in Drums), Novi Comment, Acad. Sci. Petropolitanae 10: 243–260, 1766.

L. Euler, Tentamen de sono campanarum (An Effort on the Sound of Bells), Novi Comment, Acad. Sci. Imp. Petropolitanae 10: 261–281 1766.

E. Chladni, Entdeckungen über die Theorie des Klanges (Discoveries on the theory of sound), (bey Weidmanns Erben und Reich, 1787.
http://dx.doi.org/10.14711/spcol/b495277

D. O’Mathuna, Jacques II Bernoulli and The Problem of the Vibrating Plate, Dublin Institute for Advanced Studies, 1994.
http://dx.doi.org/10.1007/978-3-0348-9072-4_10

K. E. Kurrer, The History of the Theory of Structures, The History of the Theory of Structures: From Arch Analysis to Computational Mechanics, 2008.
http://dx.doi.org/10.1260/026635108786261018

A. C. Ugural, Stresses in Beams, Plates, and Shells. CRC Press Taylor & Francis Group, 2010.

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory: Analysis, and Applications, Applied Mechanics Reviews 55, 2001.
http://dx.doi.org/10.1115/1.1483356

G. Galilei, Dialogues Concerning Two New Sciences 1638. (Macmillan, 1914).

M. Wells, Engineers: A History of Engineering and Structural Design, (Taylor & Francis, 2010).
http://dx.doi.org/10.4324/9780203358184

R. J. W. Milne, Structural Engineering History and Development. (Taylor & Francis, 1997).

X. Gu, X. Jin, and Y. Zhou, Basic Principles of Concrete Structures, (Springer Berlin Heidelberg, 2016).
http://dx.doi.org/10.1007/978-3-662-48565-1

R. Lesley, History of the Portland Cement Industry in the United States. (International Trade Press, inc., 1924).
http://dx.doi.org/10.3133/b522

P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials, Concrete, 2006.

F. Newby, Early Reinforced Concrete Studies in the History of Civil Engineering. (Routledge, 2016).

F. Kerekes and H. Reid Jr., Fifty Years of Development in Building Code Requirements for Reinforced Concrete. ACI Journal Proceedings, Vol. 50: 441-471, 1954.
http://dx.doi.org/10.14359/11772

M. Kamara, M. Mahamid, and L.C. Novak, Historical Perspective on the Evolution of Two-Way Slab Design. ACI Special Publication, Vol. 287: 39-48, 2011.

ACI committee 318, Building Code Requirements for Structural Concrete 318-63, 1963.
http://dx.doi.org/10.14359/2769

R. lan Gilbert, Deflection Calculation for Reinforced Concrete Structures-Why We Sometimes Get it Wrong, ACI Structural Journal, Vol. 96: 1027-1032, 1999.
http://dx.doi.org/10.14359/779

D. E. Branson and H. Trost, Unified Procedures for Predicting the Deflection and Centroidal Axis Location of Partially Cracked Nonprestressed and Prestressed Concrete Members. ACI Journal Proceedings, Vol. 79: 119-130, 1982.
http://dx.doi.org/10.14359/10887

W. G. Corley and J. O. Jirsa, Equivalent Frame Analysis for Slab Design, ACI Journal, Vol. 67: 875–884, 1970.
http://dx.doi.org/10.14359/7317

ACI Committee 314, Guide to Simplified Design for Reinforced Concrete Buildings 314R-11, 2012.

ACI Committee 332, Residential Code Requirements for Structural Concrete ACI 332-10, 2010.

ACI Committee 318, Building Code Requirements for Structural Concrete ACI 318-05, 2005.

ACI Committee 318, Building Code Requirements for Structural Concrete ACI 318-02, 2002.

ACI Committe 318, Building Code Requirements for Structural Concrete 318-11, 2011.

J. C. Walraven, Eurocode 2: Design of Concrete Structures. Concrete, 2003.

Japan Society of Civil Engineers, Standard Specifications for Concrete Structures, Concrete, 2007.

E. Hognestad, A Study of Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin Series No. 399, 1951.

D. C. Kent and R. Park, Flexural Members with Confined Concrete, Journal of Structural Division, Vol. 97: 1969-1990, 1971.

S. Popovics, A Numerical Approach to the Complete Stress-Strain Curve of Concrete, Cement and Concrete Research, Vol. 3: 583-599, 1973
http://dx.doi.org/10.1016/0008-8846(73)90096-3

H. Rusch, Researches Toward a General Flexural Theory for Structural Concrete, Journal of ACI, Vol. 57: 1-28, 1960.
http://dx.doi.org/10.14359/8009

GB 50010, Code for Design of Concrete Structures, 2002.

E. Thorenfeldt, A. Tomaszewicz, and J. J. Jensen, Mechanical Properties of High-strength Concrete and Application in Design, Proceedings of the Symposium Utilization of High-Strength Concrete, Tapir, Trondheim, pp. 149-159, 1987

D.J. Carreira, K-H. Chu, Stress-Strain Relationship for Plain Concrete in Compression, Journal of ACI, Vol. 82 (No. 6): 797-804, 1985.
http://dx.doi.org/10.14359/10390

Concrete International Federation for Structural, CEB-FIP Model Code 1990, 1993.
http://dx.doi.org/10.1680/ceb-fipmc1990.35430.bm04

Z. Lu, Y. Zhao, M. Asce, Empirical Stress-Strain Model for Unconfined High-Strength Concrete under Uniaxial Compression, Journal of Materials in Civil Engineering, Vol. 22: 1181–1186, 2010.

M. Hejazi, Innovative Approach for Analyzing Thin/Thick Plates Considering Nonlinearity and Plasticity with Damage for Various Boundary Conditions, Master Thesis, Jordan University of Science and Technology, 2018.

Z. B Haber, M. Saiid Saiidi, D.H. Sanders, Behavior and simplified modeling of mechanical reinforcing bar splices. ACI Structural Journal, Vol. 112: 179–188, 2015.
http://dx.doi.org/10.14359/51687455

W. Elizabeth, B. M. Shahrooz, R. A. Miller, and J. Swanson Analytical Evaluation of Structural Concrete Members with High-Strength Steel Reinforcement, University of Cincinnati, 2009.

L. N. Lowes, J. P. Moehle, S. Govindjee, Concrete-Steel Bond Model for Use in Finite Element Modeling of Reinforced Concrete Structures, ACI Structural Journal, Vol. 101 (No.4): 501–511, 2004.
http://dx.doi.org/10.14359/13336

L. N. Lowes, Finite Element Modeling of Reinforced Concrete Beam-Column Bridge Connections, University of California, Berkeley, 1999.

J. I. Restrepo-Posada, L. L. Dodd, R. Park, N. Cooke, Variables affecting cyclic behavior of reinforcing steel, Journal of Structural Engineering, Vol. 120: 3178–3196, 1994.
http://dx.doi.org/10.1061/(asce)0733-9445(1994)120:11(3178)

ACI Committee 439, Report on Steel Reinforcement—Material Properties and U.S. Availability (ACI 439.4R-09(17)), MI, 2017.

ABAQUS (SIMULIA), ABAQUS User’s Manual, SIMULIA 1–847, 2012.

B. Piscesa, M. M. Attard, and A. K. Samani, Tangaramvong, Plasticity constitutive model for stress-strain relationship of confined concrete, ACI Matererials Journal, Vol.114: 361–371, 2017.
http://dx.doi.org/10.14359/51689428

H-G. Kwak and F. C. Filippou, Finite Element Analysis Of Reinforced Concrete Structures Under Monotonic Loads and Finite Element Analysis Of Reinforced Concrete Structures, Berkeley, California, 1990.

C. K. Choi and S. H. Cheung, Tension Stiffening Model for Planar Reinforced Concrete Members, Computers and Structures, Vol. 59: 179–190, 1996.

X. Gu, X. Jin, and Y. Zhou, Mechanical Properties of Concrete and Steel Reinforcement. In: Basic Principles of Concrete Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 21–58, 2016.
http://dx.doi.org/10.1007/978-3-662-48565-1_2

W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. McGraw-Hil, 2002.

M. M. Attard and S. Setunge, Stress-strain relationship of confined and unconfined concrete, ACI Matererials Journal, Vol. 93: 432–442, 1996.
http://dx.doi.org/10.14359/9847

K. K. B. Dahl, Uniaxial Stress–Strain Curves for Normal and High Strength Concrete, Lyngby, 1992.

R. K. L. Su and C. Bei, The Effect of Coarse Aggregate Size on the Stress-strain Curves of Concrete under Uniaxial Compression, HKIE Transactions, Vol. 15 (No. 3): 33–39, 2008.
http://dx.doi.org/10.1080/1023697x.2008.10668122

P. Grassl and M. Jirásek, Damage-Plastic Model for Concrete Failure, International Journal of Solids Structures, Vol. 43: 7166–7196, 2006.
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.032

Y-H. Wang, Q. Tang, X. Nie, Comparative Investigation on Influences of Concrete Material Constitutive Models On Structural Behavior, Construction and Building Materials, Vol. 144: 475–483, 2017.
http://dx.doi.org/10.1016/j.conbuildmat.2017.03.174

V. Chaudhari and A. Chakrabarti, Modeling of Concrete for Nonlinear Analysis using Finite Element Code ABAQUS, International Journal of Computer Applications, Vol. 44 (No. 7): 14–18, 2012.

M. A. Polak and F. J. Vecchio, Nonlinear Analysis of Reinforced‐Concrete Shells. Journal of Structural Engineering, Vol. 119 (No. 12): 3439–3462, 1993.
http://dx.doi.org/10.1061/(asce)0733-9445(1993)119:12(3439)

M. Hafezolghorani, F. Hejazi, R. Vaghei, M. S. B. Jaafar, and K. Karimzade, Simplified Damage Plasticity Model for Concrete, Engineering Structures, Vol.27: 68–78, 2017.
http://dx.doi.org/10.2749/101686616x1081

B. Massicotte, A. E. Elwi, and J. G. MacGregor, Tension‐Stiffening Model for Planar Reinforced Concrete Members. J Engineering Structures, Vol.116: 3039–3058, 1990.
http://dx.doi.org/10.1061/(asce)0733-9445(1990)116:11(3039)

R. S. B. Stramandinoli and H. L. La Rovere, An Efficient Tension-Stiffening Model for Nonlinear Analysis of Reinforced Concrete Members. Engineering Structures, Vol. 30: 2069–2080, 2008.
http://dx.doi.org/10.1016/j.engstruct.2007.12.022

E. Hernández-Montes, A. Cesetti, and L. M. Gil-Martín , Discussion Of An Efficient Tension-Stiffening Model For Nonlinear Analysis Of Reinforced Concrete Members, by Renata S.B. Stramandinoli, Henriette L. La Rovere. Engineering Structures, Vol. 48: 763–764, 2013.

http://dx.doi.org/10.1016/j.engstruct.2012.09.032

G. Kaklauskas, V. Gribniak, R. Girdzius, Average Stress-Average Strain Tension-Stiffening Relationships Based on Provisions of Design Codes, Journal of Zhejiang University, Vol. A12: 731–736, 2011.
http://dx.doi.org/10.1631/jzus.a1100029

Y. Sümer and M. Aktaş, Defining Parameters For Concrete Damage Plasticity Model, Journal of Structural Mechanics, Vol. 1: 149–155, 2015.
http://dx.doi.org/10.20528/cjsmec.2015.07.023

K. Fields, P. H. Bischoff, Tension Stiffening and Cracking of High-Strength Reinforced Concrete Tension Members, ACI Structural Journal, Vol. 101: 447–456, 2004.
http://dx.doi.org/10.14359/13330

B. L. Wahalathantri, D. P. Thambiratnam, T. H. T. Chan, S. Fawzia, A material model for flexural crack simulation in reinforced concrete elements using ABAQUS, Proceedings of First International Conference in Engineering, Des Dev Built Environ Sustain Wellbeing 260–264, 2011.

Q. Du, Finite ElementModelling of Steel/Concrete Bond for Corroded Reinforcement, University of Ottawa, 2016.

L. Torres, F.López-Almansa, and L.M. Bozzo, Tension-Stiffening Model for Cracked Flexural Concrete Members, Journal of Structural Engineering, Vol. 130: 1242–1251, 2004.
http://dx.doi.org/10.1061/(asce)0733-9445(2004)130:8(1242)

V. Gribniak, H. A. Mang, R. Kupliauskas, and G. Kaklauskas, Stochastic Tension-Stiffening Approach for the Solution of Serviceability Problems in Reinforced Concrete: Constitutive Modeling, Computer-Aided Civil and Infrastructure Engineering, Vol. 30 (No. 6): 684–702, 2015.

S. H. Rizkalla, L. S. Hwang, and M. El Shahawi, Transverse Reinforcement Effect on Cracking Behaviour of R.C. Members, Canadian Journal of Civil Engineering, Vol. 10: 566–581, 1983.
http://dx.doi.org/10.1139/l83-087

A. Belarbi and T. T. C. Hsu, Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened By Concrete, ACI Structural Journal, Vol. 91: 465–474, 1994.
http://dx.doi.org/10.14359/4154

M. Collins and D. Mitchell, Prestressed Concrete Structures. Prentice Hall, Englewood Cliffs, N.J., 1991.

International Federation for Structural Concrete, fib Model Code for Concrete Structures 2010 MC2010, 2013.

S. Mashoof, The Mathematical Modelling Of Concrete Constitutive Relationships, City University London, 1989.

P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials, Concrete, 2006.

D. J. Raynor, D. E. Lehman, and J. F. Stanton, Bond-slip response of reinforcing bars grouted in ducts. ACI Structural Journal, Vol. 99: 568–576, 2002.
http://dx.doi.org/10.14359/12296

H. Shima, L. L. Chou, and H. Okamura, Micro and Macro Models for Bond in Reinforced Concrete, Journal Faculty of Engineering, University Tokyo XXXIX:133–194, 1987.

G. M. McNeice, Elastic-Plastic Bending Analysis of Plates And Slabs by the Finite Element Method, University College London, 1967.

ACI Committee 318, Building Code Requirements for Structural Concrete, ACI 318-14, 2014.

H. H. Abrishami and D. Mitchell, Analysis of Bond Stress Distributions in Pull-out Specimens, Journal of Structural Engineering, Vol. 122, (No. 3): 255–261, 1996.
http://dx.doi.org/10.1061/(asce)0733-9445(1996)122:3(255)

J. C. Jofriet and G. M. McNeice, Finite Element Analysis of RC Slabs, Journal of Structural Division, ASCE, Vol. 97 (No. ST3): 785-806, 1971.

F. R. Hand, D. A. Pecknold, and W. C. Schnobrich, Nonlinear Layered Analysis of RC Plates and Shells, Journal of Structural Division, ASCE, Vol. 99 (No. ST7): 1491-1505, 1973.

F. K. Bashur and D. Darwin, Nonlinear Model for Reinforced Concrete Slabs, Journal of Structural Division, ASCE, Vol. 104 (No. ST1): 157-170, 1978.

Khelifi, N., Hamouine, A., Keddouci, T., Numerical Modeling of the Behavior of the Steel-Concrete Interface Contribution by Extended Finite Element Method (X/FEM), (2017) International Review of Civil Engineering (IRECE), 8 (5), pp. 227-234.
http://dx.doi.org/10.15866/irece.v8i5.12689

G. M. McNeice, Elastic-Plastic Bending Analysis of Plates and Slabs by the Finite Element Method, University College London, 1967.

Benammar, A., Merbouh, M., Bella, N., Bella, I., Glaoui, B., Resistance of Concrete Cured in Hot Climate to Magnesium and Sodium Sulfate Attacks: Effect of Sand’s Mineralogy, (2016) International Review of Civil Engineering (IRECE), 7 (6), pp. 168-175.
http://dx.doi.org/10.15866/irece.v7i6.10943

Bekkar, I., Djermane, M., Bounoua, T., Repairing of Reinforced Concrete Beam by Composite Plate, (2016) International Review of Civil Engineering (IRECE), 7 (1), pp. 1-4.
http://dx.doi.org/10.15866/irece.v7i1.5633

Mattar, I., FE Model for R.C Beams Strengthened/Retrofitted with FRP, (2015) International Review of Civil Engineering (IRECE), 6 (1), pp. 10-20.
http://dx.doi.org/10.15866/irece.v6i1.6200

Pshenichkina, V., Sukhina, K., Drozdov, V., Babalich, V., Sukhin, K., Zhukov, A., Probabilistic Method for Service Life Estimation of Reinforced Concrete Roof Trusses of Operated Industrial Building, (2016) International Review of Civil Engineering (IRECE), 7 (6), pp. 158-163.
http://dx.doi.org/10.15866/irece.v7i6.9578


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize