Open Access Open Access  Restricted Access Subscription or Fee Access

A Contact Model Coupling Friction and Adhesion: Application to Pile/Soil Interface

Nazihe Terfaya(1*), A. Berga(2), M. Raous(3), N. Abou-Bekr(4)

(1) Laboratoire de Fiabilité des Matériaux et des Structures, Université TAHRI Mohamed Bechar, Algeria
(2) Laboratoire de Fiabilité des Matériaux et des Structures, Université TAHRI Mohamed Bechar, Algeria
(3) Laboratoire de Mécanique et d'Acoustique, CNRS, Aix-Marseille Université (AMU), France
(4) Laboratoire Eau et Ouvrages dans Leur Environnement (EOLE), Université Aboubakr Belkaid, Algeria
(*) Corresponding author


DOI: https://doi.org/10.15866/irece.v9i1.14034

Abstract


In this paper, the behavior of the interface pile-soil is simulated using a unilateral contact model with the coupling of friction and adhesion. This model gives a continuous transition from complete adhesion to the classical Coulomb friction law with unilateral conditions. The model is implemented in the finite element code GYPTIS90 developed by Raous et al. An application is presented, for modeling soil/pile interface behavior, on the simulation of pull-out experiments of a pile. The identification of the model parameters is discussed and comparisons are presented between modeled pile behavior and that predicted from experimental results. The proposed model has achieved better results.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Frictional Contact; Adhesion; Soil-Structure Interface; Piles; Finite Elements

Full Text:

PDF


References


C. S. Desai, D. B. Rigby, Modelling and testing of interfaces, Studies in Applied Mechanics, Vol.42:107-125, 2005.
http://dx.doi.org/10.1016/s0922-5382(06)80008-5

A. Skejic, Interface Formulation Problem in Geotechnical Finite Element Software, EJGE, Vol.17: 2035-2041, 2012.
http://dx.doi.org/10.1002/9780470409732.ch2

C. S. Deasai, M. Zaman, Advanced geotechnical engineering: soil structure interaction using computer and material models (CRC Press, NW USA, 2014).
http://dx.doi.org/10.1201/b15578

Y.K. Li, X.L. Han, and J. Ji, Behavior of Interfaces between Granular Soil and Structure: A State-of the-art Review, The Open Civil Engineering Journal, Vol.9; 213-223, 2015.
http://dx.doi.org/10.2174/1874149501509010213

R. Goodman, R.L. Taylor, and T.L. Brekke, A model for the mechanics of jointed rock, Journal of Soil Mechanics and Foundation Engineering Division ASCE, Vol. 94:637-659, 1968.

V.p. Nguyen, An open source program to generate zero-thickness cohesive interface elements, Advances in engineering software Vol. 74:27–39, 2014.
http://dx.doi.org/10.1016/j.advengsoft.2014.04.002

C.S. Desai, M. Zaman, J.G. Lightner, HG. Siriwardena, Thin-layer elements for interfaces and joints, International Journal for Numerical and Analytical Methods in Geome-chanics, Vol. 8:19-43, 1984.
http://dx.doi.org/10.1002/nag.1610080103

KG. Sharma, CS. Desai, Analysis and implementation of thin-layer element for interfaces and joints, J. Eng. Mech. Vol. 118, (Issue 12): 2442-2462, 1992.
http://dx.doi.org/10.1061/(asce)0733-9399(1992)118:12(2442)

X. Qian, H. Yuan,Q. Li, and B. Zhang, Comparative Study on Interface Elements, Thin-Layer Elements, and Contact Analysis Methods in the Analysis of High Concrete-Faced Rockfill Dams, Journal of Applied Mathematics, Vol. 2013: 11 pages, 2013.
http://dx.doi.org/10.1155/2013/320890

B. Cerfontaine, A.C. Dieudonné, J.P. Radu, F. Collin, and R. Charlier, 3D zero-thickness coupled interface finite element: Formulation and application, Computers and Geotechnics, Vol. 69:124–140, 2015.
http://dx.doi.org/10.1016/j.compgeo.2015.04.016

A. Lashkari, and M. Kadivar, A constitutive model for unsaturated soil–structure interfaces, Int. J. Numer. Anal. Meth. Geomech. Vol. 40:207–234, 2016.
http://dx.doi.org/10.1002/nag.2392

H. Stutz, D. Mašín, A. S. Sattari, and F. Wuttke, A general approach to model interfaces using existing soil constitutive models application to hypoplasticity, Computers and Geotechnics, Vol. 87:115–127, 2017.
http://dx.doi.org/10.1016/j.compgeo.2017.02.010

Khelifi, N., Hamouine, A., Keddouci, T., Numerical Modeling of the Behavior of the Steel-Concrete Interface Contribution by Extended Finite Element Method (X/FEM), (2017) International Review of Civil Engineering (IRECE), 8 (5), pp. 227-234.
http://dx.doi.org/10.15866/irece.v8i5.12689

S. Nazir, M. Dhanasekar, A non-linear interface element model for thin layer high adhesive mortared masonry, Computers and Structures Vol. 144: 23–39, 2014.
http://dx.doi.org/10.1016/j.compstruc.2014.07.023

H. Stutz, F. Wuttke, and T. Benz, Extended zero-thickness interface element for accurate soil–pile interaction modelling, 8th european conference on numerical methods in geotechnical engineering, delft, the netherlands; june 2014.
http://dx.doi.org/10.1201/b17017-52

M. G. Katona, A simple contact-friction interface element with applications to buried culverts. Int. J. Numer. Analyt. Meth. Geomech., Vol. 7:371-38, 1983.
http://dx.doi.org/10.1002/nag.1610070308

ME. Mabsout, LC. Reese, and JL. Tassoulas, Study of pile driving by finite-element method, J. Geotech. Engrg., Vol. 121, (Issue 7): 535–543, 1995.
http://dx.doi.org/10.1061/(asce)0733-9410(1995)121:7(535)

P. Villard, Modelling of interface problems by the finite element method with considerable displacements, Comput. And Geotech., Vol. 19 (Issue 1): 23-45, 1996.
http://dx.doi.org/10.1016/0266-352x(95)00035-9

V. De Gennaro, R. Frank, Elasto-plastic analysis of the interface behaviour between granular media and structure, Computers and Geotechnics Vol. 29 (Issue 7):547-572, 2002.
http://dx.doi.org/10.1016/s0266-352x(02)00010-1

D. Sheng, P. Wriggers, and SW. Sloan, Application of Frictional Contact in Geotechnical Engineering, Int. J. Geomech. Vol. 7 (Issue 3):176-185, 2007.
http://dx.doi.org/10.1061/(asce)1532-3641(2007)7:3(176)

J. Wang, and D. Chan, Frictional contact algorithms in SPH for the simulation of soil–structure interaction, Int. J. Numer. Anal. Meth. Geomech. Vol. 38:747–770, 2014.
http://dx.doi.org/10.1002/nag.2233

M. Khishvand, M. Nazem, SW. Sloan, and JP. Carter, Application of the third medium method for frictionless contact problems in geomechanics, Computers and Geotechnics, Vol. 85:117–125, 2017.
http://dx.doi.org/10.1016/j.compgeo.2016.12.020

Taleb, H., Berga, A., Slope Stability Analysis with Interaction of Frictional Contact, (2017) International Review of Civil Engineering (IRECE), 8 (4), pp. 167-176.
http://dx.doi.org/10.15866/irece.v8i4.11535

G. Michaloudis, A. Konyukhov and N. Gebbeken, An interface finite element based on a frictional contact formulation with an associative plasticity model for the tangential interaction, Int. J. Numer. Meth. Engng, Vol. 111:753–775, 2017.
http://dx.doi.org/10.1002/nme.5485

K. Ghouilem, R. Mehaddene, M. Kadri, Contact Friction Simulating between Two Rock Bodies Using ANSYS, International Journal of Engineering Research in Africa, Vol. 29:1-9, 2017.
http://dx.doi.org/10.4028/www.scientific.net/jera.29.1

D. Sheng, K. Dieter Eigenbrod, and P. Wriggers, Finite element analysis of pile installation using large-slip frictional contact, Comput. And Geotech., Vol. 32 (Issue 1): 17-26, 2005.
http://dx.doi.org/10.1016/j.compgeo.2004.10.004

D. Sheng, P. Wriggers, W. S. Sloan, Improved numerical algorithms for frictional contact in pile penetration analysis, Comput. And Geotech., Vol. 33: 341-354, 2006.
http://dx.doi.org/10.1016/j.compgeo.2006.06.001

D. Sheng, H. Yamamoto,P. Wriggers, Finite element analysis of enlarged end piles using frictional contact, Soils and Foundations Vol. 48, (Issue 1):1–14, 2008.
http://dx.doi.org/10.3208/sandf.48.1

I. Said, V. De Gennaro, R. Frank, Axisymmetric finite element analysis of pile loading tests, Computers and Geotechnics, Vol. 36 (Issue 1-2): 6-19, 2009.
http://dx.doi.org/10.1016/j.compgeo.2008.02.011

K.A. Fischer, D. Sheng, AG. Abbo, Modeling of pile installation using contact mechanics and quadratic elements, Computers and Geotechnics, Vol. 34 (Issue 6): 449-461, 2007.
http://dx.doi.org/10.1016/j.compgeo.2007.01.003

J. Ninic, J. Stascheit and G. Meschke, Beam–solid contact formulation for finite element analysis of pile–soil interaction with arbitrary discretization, Int. J. Numer. Anal. Meth. Geomech. Vol. 38:1453–1476, 2014.
http://dx.doi.org/10.1002/nag.2262

Taleb, H., Berga, A., Finite Element Analysis of Slope Stability Reinforced with Pile, (2017) International Review of Civil Engineering (IRECE), 8 (1), pp. 25-33.
http://dx.doi.org/10.15866/irece.v8i1.11147

M. Raous, L. Cangémi, M. Cocou, A consistent model coupling adhesion, friction and unilateral contact, Comput. Methods Appl. Mech. Engrg. Vol. 177:383–399, 1999
http://dx.doi.org/10.1016/s0045-7825(98)00389-2

M. Raous, Y. Monerie, Unilateral contact, friction and adhesion: 3D cracks in composite materials (in: J.A.C. Martins, M.D.P. Monteiro Marques (Eds.), Contact Mechanics, Kluwer, Dordrecht, 2002, pp. 333–346).
http://dx.doi.org/10.1007/978-94-017-1154-8_36

M. Frémond, Adhérence des solides, J. Méc. Théor. Appl. Vol. 6 (Issue3): 383–407, 1987.
http://dx.doi.org/10.1051/jphystap:01880009009301

M. Frémond, Contact with adhesion (CISM Courses and Lectures, Vol. 302, Springer, Wien, 1988, pp. 177–221).
http://dx.doi.org/10.1007/978-3-7091-2624-0_3

JC. Latil, M. Raous, Module Gyptis version 1.0. Contact unilatéral avec frottement en mécanique des structures. Inéquations variationnelles (Publication du L.M.A., Notes Scientifiques, 132, CNRS., 1991).
http://dx.doi.org/10.1007/978-3-7091-2967-8_14

P. Wriggers, Computational Contact Mechanics (John Wiley & Sons, Chichester, 2002).

Terfaya, N., Berga, A., Raous, M., A Bipotential Method Coupling Contact, Friction and Adhesion, (2015) International Review of Mechanical Engineering (IREME), 9 (4), pp. 341-352.
http://dx.doi.org/10.15866/ireme.v9i4.5841

M. Raous, V. Belloeil and I Rosu, Modélisation de l’adhésion par collage (LCPC Contract report, LMA, France 85 pages, 2004).
http://dx.doi.org/10.1016/s0761-8425(04)71353-4

V. Acary, Y. Monerie, Nonsmooth fracture dynamics using a cohesive zone model (INRIA report n6032, 56 pp., 2006).
http://dx.doi.org/10.1080/12506559.2001.11869264

F. Fouchal, F. Lebon, I. Titeux, Contribution to the modelling of interfaces in masonry construction, Constr. Build. Mater. Vol. 23 (Issue 6): 2428–244, 2009.
http://dx.doi.org/10.1016/j.conbuildmat.2008.10.011

M. Raous, M.A. Karray, Model coupling friction and adhesion for steel-concrete interfaces, Int. J. Comput. Appl. Technol. Vol. 34 (Issue 1): 42–51, 2009.
http://dx.doi.org/10.1504/ijcat.2009.022701

M. Raous, C. Henninger, JP. Vilotte, and G. Festa, Adhesion and friction for fault interface in geophysics, IV European Conference on Compuational Mechanics, May 16-21, Paris, 2010.
http://dx.doi.org/10.1007/0-387-29195-4_9

M. Raous, Interface models coupling adhesion and friction, Comptes Rendus Mécanique Vol. 339 (Issues 7–8): 491-501, 2011
http://dx.doi.org/10.1016/j.crme.2011.05.007

M. Raous, Art of Modeling in Contact Mechanics (In: Pfeiffer F., Bremer H. (eds) The Art of Modeling Mechanical Systems. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol 570. Springer, Cham, 2017).
http://dx.doi.org/10.1007/978-3-319-40256-7_4

B. Halphen, Q.S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, Vol. 14(Issue 1):39–62, 1975.
http://dx.doi.org/10.1007/bfb0057258

F. Baguelin, R. Frank, JF. Jezequel, Parameters for friction piles in marine soils, Proceedings 2nd Int. Conf. Num. Meth. in Offshore Piling, Austin, Texas,. pp. 197-214. April, 1982.
http://dx.doi.org/10.1201/9781482283754

R. Frank , Etudes théoriques de fondations profondes et d'essais en place par autoforage dans les LPC et résultats pratiques (1972-1983)(Rapport de recherche n° 128, Labo. P. et Ch., 96 p. Juin 1984).

R. Frank, P. Mestat, Aspects expérimentaux et numériques du frottement unilatéral des pieux, Mec. Ind. ,Vol.1: 651–666, 2000.

A. Barbas, Utilisation de la méthode des éléments finis en mécanique des sols dans le domaine de l'élastoplasticité, Ph. D. Thesis, L'école Nationale Des Ponts Et Chaussées, France, 1981

R. Frank, Etude théorique du comportement des pieux sous charge verticale: introduction de la dilatance, Ph.D. Thesis, Pierre et Marie Curie University, (Paris VI), France, 1974.

M. Boulon, J. Desrues, and P. Foray, Méthode de calcul du comportement des pieux a l'arrachement, Revue française de Géotechnique Vol. 7: 11-22, 1979.

V. De Gennaro, R. Frank, Finite element modelling of the soil-pile interaction, Bull. des Laboratoire des Ponts et Chaussées, Vol. 256-257: 107-133, 2005.
http://dx.doi.org/10.1016/s0152-9668(03)80002-5

Y. Khodair, A. Abdel-Mohti, Numerical analysis of pile–soil interaction under axial and lateral loads, International Journal of Concrete Structures and Materials Vol. 8 (Issue 3) :239–249, 2014.
http://dx.doi.org/10.1007/s40069-014-0075-2

J. Dijkstra, W. Broere, and O.M. Heeres, Numerical simulation of pile installation, Computers and Geotechnics Vol. 38: 612–622, 2011.
http://dx.doi.org/10.1016/j.compgeo.2011.04.004

Y. Mascarucci, S. Miliziano, and A. Mandolini, A numerical approach to estimate shaft friction of bored piles in sands, Acta Geotechnica Vol. 9: 547–560, 2014.
http://dx.doi.org/10.1007/s11440-014-0305-4

K. Faizi, R. Kalatehjari, R. Nazir, and A. S. A. Rashid, Determination of pile failure mechanism under pullout test in loose sand, J. Cent. South Univ. Vol. 22: 1490−1501, 2015.
http://dx.doi.org/10.1007/s11771-015-2666-8

L. Nie, T. Wang, Analysis of shear test on pile-soil interface, Chemical engineering transactions Vol. 46:727-732, 2015.
http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.1743

Z. Khelifi, A. Berga, N. Terfaya, Modeling the Behavior of Axially and Laterally Loaded Pile with a Contact Model, EJGE, Vol. 16: 1239-1258, 2011.
http://dx.doi.org/10.4043/3401-ms


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize