

Development and Mathematical Simulation of an Orbital-Type Actuator of a Tunneling Machine
(*) Corresponding author
DOI: https://doi.org/10.15866/irece.v8i4.12825
Abstract
This article is about the development and mathematical simulation of an orbital-type actuator of a tunneling machine. As a result of the research, the authors substantiated a need for developing compact tunneling machines based on hard rock destruction by the shock-mechanical method. This method allows releasing the impact energy throughout the mine face selectively and, at the same time, uniformly. The authors calculated optimum rotational speeds for actuators of tunneling machines (SQP method) for uniform load distribution on a treated surface. The article is a starting point for further development of tunneling machines equipped with an orbital shock-shearing actuator.
Copyright © 2017 Praise Worthy Prize - All rights reserved.
Keywords
References
Hartman L. H., Mutmansky M. J. (2002). Introductory Mining Engineering, 584.
http://dx.doi.org/10.1007/0-387-30844-x_18
Mendyka P., Kotwica K., Stopka G., Gospodarczyk P. (2016). Innovative Roadheader Mining Head With Assymetrical Disc Tools, SGEM 2016: 16th international multidisciplinary scientific geoconference: science and technologies in geology, exploration and mining, 489-496.
http://dx.doi.org/10.5593/sgem2016/b12/s03.064
Zhang Z. X. (2016). Rock Fracture and Blasting. Rock Fracture and Blasting, 425–436.
http://dx.doi.org/10.1016/b978-0-12-802688-5.00022-1
Goldish M. (2010). Huge earthmovers, 24.
http://dx.doi.org/10.4271/620503
Comakli R., Kahraman S., Balci C. (2014). Performance prediction of roadheaders in metallic ore excavation, Tunnelling and Underground Space Technology. Vol. 40, 38-45.
http://dx.doi.org/10.1016/j.tust.2013.09.009
Kotylev U. E., Ushakov L. S., Kravchenko V. A. (2000), Hydraulic impact devices, P. 416.
Ushakov L. S., Method of mining. Patent Russian Federation, №. 2015113260/03(020727), 2015.
Roman M., Josif B., & Nikolay D. (2015). Development of position system of a roadheader on a base of active IR-sensor. In Procedia Engineering. Vol. 100, 617–621.
http://dx.doi.org/10.1016/j.proeng.2015.01.412
Han F., Wang D., Jiang J. & Zhu X. (2014). Modeling the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer. International Journal of Mining Science and Technology, 24(1), 129–135.
http://dx.doi.org/10.1016/j.ijmst.2013.12.022
Wodecki J., Stefaniak P., Wylomanska A., Zimroz R. & Zak G. (2016). Segmentation algorithm of roadheader vibration signal based on the stable distribution parameters. In Vibroengineering Procedia Vol. 6, 125-129.
http://dx.doi.org/10.21595/jve.2016.17114
Lu X., Wang D., Xu C., Zhu C. & Shen W. (2015). Experimental investigation and field application of foam used for suppressing roadheader cutting hard rock in underground tunneling. Tunnelling and Underground Space Technology, 49, 1–8.
http://dx.doi.org/10.1016/j.tust.2015.03.011
Acaroglu O., H. Ergin (2006), A new method to evaluate roadheader operational stability, Tunnelling and Underground Space Technology. Vol. 21, 172-179.
http://dx.doi.org/10.1016/j.tust.2005.04.004
JianPing Y., WeiZhong C., DianSen Y. & JingQiang Y. (2015). Numerical determination of strength and deformability of fractured rock mass by FEM modeling. Computers and Geotechnics, 64, 20–31.
http://dx.doi.org/10.1016/j.compgeo.2014.10.011
Nocedal J., Wright S., Numerical Optimization. (2006). 634.
http://dx.doi.org/10.1007/b98874
Kwon R. H. (2014). Introduction to Linear Optimization and Extensions with MATLAB®. P. 362.
http://dx.doi.org/10.1007/978-1-4842-0292-0_3
Bate K.Yu. (2010). Finite element methods. 1022.
http://dx.doi.org/10.1142/9789814313025_0001
Trifonov A. G., (2016). Formulation of the optimization problem and calculus for its solution. URL: https://goo.gl/BoQAEU (Accessed 8 December, 2016)
http://dx.doi.org/10.21278/brod67203
Pillo G., Ginnessi F. (2013). Nonlinear Optimization and Applications. 255.
http://dx.doi.org/10.1007/978-1-4899-0289-4
Byrd R. H., Curtis F. E., Nocedal J. (2008). An Inexact SQP Method for Equality Constrained Optimization. SIAM Journal on Optimization. Vol. 19, 351.
http://dx.doi.org/10.1137/060674004
Chalco-Cano Y., Lodwick W. A., Osuna-Gómez R. (2016). The Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems, Fuzzy Optimization and Decision Making. Vol. 15, 57-73.
http://dx.doi.org/10.1007/s10700-015-9213-9
Gabrel V., Murat C. & Thiele A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research. 25.
http://dx.doi.org/10.1016/j.ejor.2013.09.036
Sohrabi-Haghighat M., Ghasemi M. (2014). A new SQP algorithm and numerical experiments for nonlinear inequality constrained optimization problem. International Journal of Applied Mathematical Research, 3(3), 336–347.
http://dx.doi.org/10.14419/ijamr.v3i3.3121
Gill P.E., Saunders M.A. & Wong E. (2015). On the performance of SQP methods for nonlinear optimization. In Springer Proceedings in Mathematics and Statistics. Vol. 147, 95–123.
http://dx.doi.org/10.1007/978-3-319-23699-5_5
Schittkowski K. (1985). NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems. Annals of Operations Research. Vol. 5. 485-500.
Biggs M. C., Constrained Minimization Using Recursive Quadratic Programming in Towards Global Optimization (North-Holland, 1975), 341-349.
http://dx.doi.org/10.1093/imamat/21.1.67
Meo, S., Nonlinear convex optimization of the energy management for hybrid electric vehicles, (2014) Engineering Letters, 22 (4), pp. 170-182.
Esposito, F., Isastia, V., Meo, S., Energy management strategy for automotive electric power system, (2006) Przeglad Elektrotechniczny, 82 (2), pp. 26-31.
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2023 Praise Worthy Prize