Open Access Open Access  Restricted Access Subscription or Fee Access

Resistance of Concrete Cured in Hot Climate to Magnesium and Sodium Sulfate Attacks: Effect of Sand’s Mineralogy


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v7i6.10943

Abstract


The influence of sand’s mineralogy on sulfate environments of concretes mixed in hot weather conditions was investigated. Concrete specimens of 40×40×160 mm, prepared with limestone or silico-calcareous and or siliceous sand respectively, were mixed in hot weather conditions, using a controlled chamber (temperature, relative humidity and air speed were 50°C, 10% and 12km/h respectively). Specimens were then immersed in a 5% of different sulfate solutions (MgSO4 and Na2SO4) for 12 months. During this period, mass changes were measured, and compressive strength values were determined at 1, 3, 6, 9 and 12 months of sulfate exposure. The results showed that the mineralogy of sand has a significant effect on the mechanical performance of concrete subjected to hot weather conditions and exposed to different environments immersion. In the case of hot curing concrete with limestone sand, the compressive strength values are higher than hot curing concrete with silico-calcareous and siliceous sand respectively, whatever the conservation environments were: in water or in both sulfate solutions (MgSO4 and Na2SO4).
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


High Temperature; Hot Weather Concreting; Limestone Sand; Silico-Calcareous Sand; Siliceous Sand; Sulfate Attack; Magnesium Sulfate; Sodium Sulfate; Durability

Full Text:

PDF


References


ACI Committee 305. Hot weather concreting, Committee Report ACI 305 R-99.
http://dx.doi.org/10.14359/8078

A. S. Al-Gahtani. Effect of curing methods on the properties of plain and blended cement concretes, Construction and Building Materials. 24 (3): 308-314, 2010.
http://dx.doi.org/10.1016/j.conbuildmat.2009.08.036

M. Ibrahim, M. Shameem, M. Al-Mehthel, M. Maslehuddin, Effect of curing methods on strength and durability of concrete under hot weather conditions, Cement and Concrete Composites. 41: 60-69, 2013.
http://dx.doi.org/10.1016/j.cemconcomp.2013.04.008

B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Journal of Cement and Concrete Research. 37, 483–491, 2007.
http://dx.doi.org/10.1016/j.cemconres.2006.11.016

A. Kılıc, CD. Atis, A. Teymen, O. Karahan, F. zcan, C. Bilim , M. zdemir, The influence of aggregate type on the strength and abrasion resistance of high strength concrete, Journal of Cement Concrete Composites.30, 290–6 , 2008.
http://dx.doi.org/10.1016/j.cemconcomp.2007.05.011

H. Beushausen, T. Dittmer, The influence of aggregate type on the strength and elastic modulus of high strength concrete, Journal of Constriction and Building Materials. 74, 132–139. 132–139, 2015.
http://dx.doi.org/10.1016/j.conbuildmat.2014.08.055

H. Pengfei, Y. Bao, Y. Yao, Influence of HCl corrosion on the mechanical properties of concrete, Cement and Concrete Research, 35 (3): 584-589, 2005.
http://dx.doi.org/10.1016/j.cemconres.2004.06.027

M. Jacques, I. Odler, J. P. Skalny, Sulfate attack on concrete (CRC Press, 2003).
http://dx.doi.org/10.1520/cca10509j

K. Sotiriadis, E. Nikolopoulou, S. Tsivilis, Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature, Cement and Concrete Composites, 34 (8) : 903-910, 2012.
http://dx.doi.org/10.1016/j.cemconcomp.2012.05.006

Jocius, V., Skripkiūnas, G., Lipinskas, D., Cement Type Influence on Fire Resistance of Concrete, (2013) International Review of Civil Engineering (IRECE), 4 (4), pp. 162-167.

A.M. Alhozaimy, Effect of absorption of limestone aggregates on strength and slump loss of concrete, Cement and Concrete Composites. 31 (7) : 470-473, 2009.
http://dx.doi.org/10.1016/j.cemconcomp.2009.04.010

Gumidi, I., Abdelaziz, Y., Rikioui, T., Strength and Durability of High Performance Concrete Using Local Materials, (2014) International Review of Civil Engineering (IRECE), 5 (1), pp. 43-47.

A.H. Bushlaibi, M.A. Abdullah, Efficiency of curing on partially exposed high-strength concrete in hot climate, Cement and concrete research. 32(6): 949-953, 2002.
http://dx.doi.org/10.1016/s0008-8846(02)00735-4

L.L. Michael, D. Ufuk, Relationship between particle shape and void content of fine aggregate, Cement concrete and aggregates. 26 (1): 1-7. 2004.
http://dx.doi.org/10.1520/cca11916

J. Ortiz, A. Aguado, L. Agulló, T. García, M. Zermeño, Influence of environmental temperature and moisture content of aggregates on the workability of cement mortar, Construction and Building Materials. 23(5): 1808-1814, 2009.
http://dx.doi.org/10.1016/j.conbuildmat.2008.09.016

G. Dreux, J. Festa, Nouveau guide du béton et de ses constituants. Paris, Eyrolles 1998.
http://dx.doi.org/10.1007/s10298-007-0216-8

NF EN 196-1: Méthodes d’essais des ciments – Détermination des Résistances mécaniques. France. Mars 1990.
http://dx.doi.org/10.1617/13745

N. Bella, A. Asroun, A.H. Mammeri. The advantage of polypropylene fiber use in the hot climate concreting: experimental arrays approach, In: Stark J, Ed, proceeding of 17, Ibausli, international conference of building materials, Weimar, Deutschland, pp.633-638, September 2009.
http://dx.doi.org/10.3151/jact.9.149

N. Bella, A. Asroun, I.A. Bella, Use of a new approach (design of experiments method) to study different procedures to avoid plastic shrinkage cracking of concrete in hot climates, Journal of Advanced Concrete Technology. 9 (2):149-157, 2011.
http://dx.doi.org/10.3151/jact.9.149

N. Bella, A. Assroun, I.A. Bella, Effectiveness of Different Solutions to Reduce Plastic Shrinkage in Hot Climate Concreting, Volume two of three, Second International Conference on Sustainable Construction materials and Technologies, June. 2010.
http://dx.doi.org/10.3151/jact.9.149

NF EN 1015-18. Methods of test for mortar for masonry — Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. France. 2003.
http://dx.doi.org/10.3403/02720093u

NF P 18-433. Essai pour béton durci – Partie 5 : résistance à la flexion sur éprouvettes. France. 2001.
http://dx.doi.org/10.1007/978-1-4899-3454-3_10

NF P18-455. Essai pour béton durci – Partie 3 : résistance à la compression des éprouvettes. France. 2003.
http://dx.doi.org/10.5962/bhl.title.120015

M. Bederina, Z. Makhloufi, A. Bounoua, T. Bouziani, M. Quéneude, Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions, Construction and Building Materials. 47:146–158, 2013.
http://dx.doi.org/10.1016/j.conbuildmat.2013.05.037

Z. Makhloufi, EH. Kadri, M. Bouhicha, A. Benaissa, Resistance of limestone mortars with quaternary binders to sulfuric acid solution, Constriction Building Materials. 26 : 497–504, 2012.
http://dx.doi.org/10.1016/j.conbuildmat.2011.06.050

C.G. Rocco, M. Elices, Effect of aggregate shape on the mechanical properties of a simple concrete, Engineering fracture mechanics. 76(2): 286-298, 2009.
http://dx.doi.org/10.1016/j.engfracmech.2008.10.010

A. Skaropoulou, S. Tsivilis, G. Kakali, J. H. Sharp, R. N. Swamy, Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack, Cement and Concrete Composites. 31(9): 628-636, 2009.
http://dx.doi.org/10.1016/j.cemconcomp.2009.06.003

S. Thomas, L. Barbara, R. Michae et al, Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements, Cement and Concrete Research. 39 (12): 1111-1121, 2009.
http://dx.doi.org/10.1016/j.cemconres.2009.08.005

C. Aquino, M. Inoue, H. Miura, M. Mizuta, T. Okamoto, The effects of limestone aggregate on concrete properties, Construction and Building Materials. 24 (12): 2363-2368, 2010.
http://dx.doi.org/10.1016/j.conbuildmat.2010.05.008

F. De Larrard, A. Belloc, L'influence du granulat sur la résistance à la compression des bétons, Bulletin des laboratoires des Ponts et Chaussées. 219, 1999.
http://dx.doi.org/10.1016/s0152-9668(02)80029-8

K. Tosun-Felekoğlu, The effect of C 3 A content on sulfate durability of Portland limestone cement mortars, Construction and Building Materials. 36: 437-447, 2012.
http://dx.doi.org/10.1016/j.conbuildmat.2012.04.091

Mattar, I., FE Model for R.C Beams Strengthened/Retrofitted with FRP, (2015) International Review of Civil Engineering (IRECE), 6 (1), pp. 10-20.
http://dx.doi.org/10.15866/irece.v6i1.6200

Djeddi, F., Ghernouti, Y., Abdelaziz, Y., Experimental Investigation of FRP-Concrete Hybrid Beams, (2015) International Review of Civil Engineering (IRECE), 6 (6), pp. 151-155.
http://dx.doi.org/10.15866/irece.v6i6.8187

Benoudjafer, I., Labbaci, B., Benoudjafer, I., Effect of Local Temperature During Service on the Mechanical Properties of Concrete, (2016) International Review of Civil Engineering (IRECE), 7 (3), pp. 57-62.
http://dx.doi.org/10.15866/irece.v7i3.8851


Refbacks




Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize