Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Simulation of the Hot Weather on Concrete at Early Age


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irece.v7i6.10618

Abstract


The objective of our present work is based on the study by numerical simulation, in two dimensions, of concrete behavior at an early age during the first 24 hours of hydration under severe conditions of temperature and wind speed using a COMSOL Multiphysics simulation. The temperature was maintained at 55°C for the first 7 h, then from the 8th hour to 24th hour decreasing down to 25 °C, with a 12 km/h wind speed. The model describes two divided domains air and the concrete slab. The obtained results allow us to better understand the temperature variation phenomena in the slab by heat transfer taking into account the release of heat due to the exothermic reactions of cement hydration as well as the influence of a high wind speed, while varying the thickness of the slab studied and the w/c ratio.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Temperature; Wind; Hydration; Heat; Concrete Slab

Full Text:

PDF


References


ACI Committee 305, Hot weather concreting (305 R-99, 1999). American Concrete Institute. USA. Committee Report ACI 305 R-99 1999.
http://dx.doi.org/10.14359/8078

O. S. B. Al-Amoudi, M. Maslehuddin, M. Shameem, M. Ibrahim, Shrinkage of plain and silica fume cement concrete under hot weather, Cement and Concrete Composite, Vol 29: 690-699, October 2007.
http://dx.doi.org/10.1016/j.cemconcomp.2007.05.006

N. Bella., A. Asroun, B. Benabdelkader, B. Tidjar, Efficacité des solutions de bétonnage par temps chaud approche par la méthode des plans d’expériences, INVACO2, N° 1P-365, Rabat Maroc; Novembre 2011.
http://dx.doi.org/10.1522/1438177

Al-Musallam A.A., Maslehuddin M., Abdul-Waris M., Khan M.M, Effect of mix proportions on plastic shrinkage cracking of concrete in hot environments, Construction and Building Materials, 12,pp 353-358.
http://dx.doi.org/10.1016/s0950-0618(98)00019-1

ACI Committee 207, Mass concrete. American Concrete Institute. USA. Committee Report ACI 207.1R-96. 1996.
http://dx.doi.org/10.14359/15655

A.M. Neville, Propriétés des bétons (Eyrolles,2000).in French
http://dx.doi.org/10.1007/bf02473599

F. Joseph Lamond, H. Pielert James, Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM stock N°STP 169 D, April 2006.
http://dx.doi.org/10.1520/stp169d-eb

Jocius, V., Skripkiūnas, G., Lipinskas, D., Effect of Aggregate on the Fire Resistance of Concrete, (2014) International Review of Civil Engineering (IRECE), 5 (4), pp. 118-123.
http://dx.doi.org/10.15866/irece.v5i4.2165

Benoudjafer, I., Labbaci, B., Benoudjafer, I., Effect of Local Temperature During Service on the Mechanical Properties of Concrete, (2016) International Review of Civil Engineering (IRECE), 7 (3), pp. 57-62.
http://dx.doi.org/10.15866/irece.v7i3.8851

P. Acker, J M. Torrenti, F J. Ulm, Comportement du béton au jeune âge (Lavoisier 2004).
http://dx.doi.org/10.1139/l96-929

Heat transfer module user's guide, COMSOL version 4.3 (COMSOL May 2012).
http://dx.doi.org/10.1016/s1350-4789(10)70335-4

D.P. Bentz, A rewiev of early age properties of cement based materials, Cement and concrete research, Vol 38: pp. 196-204, September 2007.
http://dx.doi.org/10.1016/j.cemconres.2007.09.005

P.J. Andersen, M.E. Andersen, D. Whiting, A guide to evaluating thermal effects in concrete pavements, SHRP, (December 1999).
http://dx.doi.org/10.14359/292

E. Hernandez-Bautista , D. P. Bentz, S. Sandoval-Torres, J. Cano-Barrita, Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions, Cement and Concrete Composites, Vol 69, 38e48 2016.
http://dx.doi.org/10.1016/j.cemconcomp.2015.10.014

A. K. Schindler, K. J. Folliard, Heat of hydration models for cementations Materials, ACI Materiels journal Vol 102(1) pp 24-33 2005.
http://dx.doi.org/10.14359/14246

J. Byfors, Plain concrete at early age, Swedish cement and concrete, Research Institute, Fack(1980)
http://dx.doi.org/10.1016/0008-8846(86)90106-7

Bentz, D. P. A Computer Model to Predict the Surface Temperature and Time of Wetness of Concrete Pavements and Bridge Decks, National Institute of Standards and Technology, NISTIR 6551, 2000.
http://dx.doi.org/10.2478/ijpeat-2013-0008

A.V. Rabadiya, Ravindra Kirar, Comparative Analysis of Wind Loss Coefficient (Wind Heat Transfer Coefficient) For Solar Flat Plate Collector, International Journal of Emerging Technology and Advanced Engineering, Vol (Issue 9): 463-468, September 2012.
http://dx.doi.org/10.1016/0741-983x(86)90035-4

Viers George ,Vigneau Jean .Pierre, Elements de climatologie, Second Edition (Nathan 2001).
http://dx.doi.org/10.1111/j.1475-4959.2006.00192.x

Makhloufi, Z., Bederina, M., Tayeb, B., Kadri, E., Bouhicha, M., Formulation of Superplasticized Limestone Concrete of Turonian, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1103-1114.

Brinda, R., Daniel, R., Sumangala, K., Influence of Cross Sectional Shape on the Heat Transfer Characteristics of Ladder Type Micro Channel Heat Sinks for ULSI, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1053-1061.

Abdelaziz, B., Kerrour, F., Kemouche, S., Thermo Mechanical Modeling of Piezoresistive Pressure Sensor, (2014) International Review on Modelling and Simulations (IREMOS), 7 (3), pp. 517-522.

El Haim, M., El Hammouti, M., Chatei, H., El Bojaddaini, M., Atounti, M., Modelling of Hydrogen Microwave Plasma in the Conditions of Diamond Deposition, (2014) International Review on Modelling and Simulations (IREMOS), 7 (2), pp. 356-361.

El Haim, M., El Hammouti, M., Chatei, H., Atounti, M., El Bojaddaini, M., COMSOL Multiphysics Simulations of the Hydrogen Microwave Plasma Characteristics, (2013) International Review on Modelling and Simulations (IREMOS), 6 (6), pp. 1980-1986.

Atifi, A., Mounir, H., El Marjani, A., A 2D Finite Element Model for the Analysis of a PEM Fuel Cell Heat and Stress Distribution, (2015) International Review on Modelling and Simulations (IREMOS), 8 (6), pp. 632-639.
http://dx.doi.org/10.15866/iremos.v8i6.7367


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize