Open Access Open Access  Restricted Access Subscription or Fee Access

A Numerical Modeling of Velocity Profiles and Shear Stress in Hydraulic Transient

S. Hamdoun(1), H. Samri(2), M. Driouich(3), M. Sammouda(4), B. Bahrar(5), Kamal Gueraoui(6*)

(1) Mechanics Group, Energy & Environment, ENSET Mohammédia, Casablanca Hassan II University, Morocco
(2) Mechanics Group, Energy & Environment, ENSET Mohammédia, Casablanca Hassan II University, Morocco
(3) Team of modeling and simulating in mechanics and energetic, Faculty of sciences, Mohammed V University, Morocco
(4) Team of modeling and simulating in mechanics and energetic, Faculty of sciences, Mohammed V University, Morocco
(5) Mechanics Group, Energy & Environment, ENSET Mohammédia, Casablanca Hassan II University, Morocco
(6) Team of modeling and simulating in mechanics and energetic, Faculty of sciences, Mohammed V University, Morocco
(*) Corresponding author


DOI: https://doi.org/10.15866/irece.v8i2.11036

Abstract


This study is devoted to a theoretical and numerical modeling of velocity profiles and shear stress in hydraulic transient of Newtonian and laminar flow in pipe. It is based on the expansion of the instantaneous velocity profiles of the flow in polynomial series of radial variable across the section of pipe. It is based on the Prado’s model. The set partial derivatives equations obtained from the conservation of mass and the theorem of momentum is then solved by the method of characteristics. This model is validated against the experimental results of Holmboe et al., and Vardy et al.. It may be incorporated in any code using the method of characteristic to simulate water-hammer in pipe.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Hydraulic Transient; Shear Stress; Newtonian Laminar Flow; Velocity Profiles; Polynomial Expansion; Method Of Characteristics

Full Text:

PDF


References


A.E. Larreteguy, R.A. Prado, A Transient shear stress model for the analysis of laminar water-hammer problems, to appear in IAHR Journal of Hydraulic Research, (2001).
http://dx.doi.org/10.1080/00221680209499872

A.K. Trikha, An efficient method for simulating frequency-dependent friction in transient liquid flow, Journal of Fluids Engineering, ASME, 97 (1975), 97 – 105.
http://dx.doi.org/10.1115/1.3447224

Allievi, L. (1909). Allegemenie theorie über die veränderliche Bewegung des Wassers in Leitungen [Allegemenie theory of the variable movement of the water in lines]. Springer.
http://dx.doi.org/10.1007/978-3-642-52015-0

A.R. Courant and D. Hilbert, Method of Mathematical Physics, Vol. 1 and 2, Interscience Publishers, N.Y., 1962.
http://dx.doi.org/10.1126/science.137.3527.334

B. Brunone, U.M. Golia, and M. Greco, Some remarks on the momentum equation for fast transients, Int. Meeting on Hydraulic Transients with Column Separation. 9th Round Table, IAHR, Valencia, Spain, (1991), 140 – 148.
http://dx.doi.org/10.1007/978-1-4614-8538-4_9

D.E. Goldberg and E.B. Wylie, Characteristics Method Using Time-Line Interpolation, ASCE Journal of Hydraulic Division, Vol. 109, N° 5, 1983.
http://dx.doi.org/10.1061/(asce)0733-9429(1983)109:5(670)

Brown F.T., Margolis D.L., Shah R.P., 1969, Small amplitude frequency behaviour of fluid lines with turbulent flow, Trans. ASME, Journal of Basic Engineering, 91, 4, 678-692
http://dx.doi.org/10.1115/1.3571209

E.B. Wylie, Advances in the use of MOC in the unsteady flow, Proc. 4th Int. Con/. On Pressure Surges, BHRA, Bath, England, (1983), 27 – 36.
http://dx.doi.org/10.1016/j.flowmeasinst.2017.01.004

E.L. Holmboe, W.T. Rouleau, The effect of viscous shear on transient in liquid lines, Journal of Basic Engineering ASME, 89 (1967), 140 - 148.
http://dx.doi.org/10.1115/1.3609549

F.T. Brown, On weighting functions for the simulation of unsteady turbulent Flow, Forum on Unsteady Flow, ASME, New Orleans, USA, FED, 15 (1984), 26 - 28.
http://dx.doi.org/10.1007/978-3-658-11912-6_2

Joukowsky, Y. (1900). Ûber der hydraulischen Stoss in Wasserleitungen [Over the hydraulic shock in water pipes]. Mémoires de l’Académie Impériale de St. Petersbourg, Bd. IX, N.5.
http://dx.doi.org/10.1086/607128

Kagawa T., Lee I., Kitagawa A., Takenaka T., 1983, High speed and accurate computing method of frequency-dependent friction in laminar pipe flow for characteristics method, Trans. Jpn. Soc. Mech. Eng., Ser. A, 49, 447, 2638-2644 [in Japanese]
http://dx.doi.org/10.1299/kikaib.49.2638

K.L. Hwang, A.E. Vardy, A characteristics model of transient friction in pipes, Journal of Hydraulic Research, IAHR, 29 (1991), 669-684.
http://dx.doi.org/10.1080/00221689109498983

Korteweg D.J. 1878 Over voortplantings-snelheid van golven in elastische buizen. PhD Thesis, Faculty of Mathematics and Physics, University of Amsterdam, Amsterdam, The Netherlands; published by S.C. van Doesburgh, Leiden, The Netherlands, 166 pp (in Dutch).
http://dx.doi.org/10.5171/2014.913057

S. Jing-Chao, C. Yigang, An efficient approximate expression for transient flow of high viscous fluid in hydraulic pipelines, Proc. 6th Int. Con/. on Pressure Surges, BHRA, Cranfield, England, (1989), 349 – 356.
http://dx.doi.org/10.1115/1.3662800

S. Sato, K. Suzuki, and T. Taketomi, Improving Zielke's method ofsimulating frequency-dependent friction in laminar liquid pipe flow, Journal of Fluids Engineering, ASME, 113 (1991), 569 – 573.
http://dx.doi.org/10.1115/1.2926516

K. Suzuki, T. Taketomi and S. Sato, “Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow,” Journal of Fluids Engineering, Vol. 113, No. 4, 1991, pp. 569-573.
http://dx.doi.org/10.1115/1.2926516

Vardy, A. E., Brown, J.M.B. (2004). Transient Turbulent Friction in fully rough Pipe Flows. Journal of Sound and Vibration. 270(1-2), 233-257.
http://dx.doi.org/10.1016/s0022-460x(03)00492-9

V.L. Streeter, E.B. Wylie, Fluid Transients, McGraw-Hill, New York, USA, 1978.
http://dx.doi.org/10.1115/1.3605176

W. Zielke, Frequency-dependent friction in transient pipe flow, Journal of Basic Engineering, ASME, 90 (1968), 109 – 115.
http://dx.doi.org/10.1115/1.3605127

M. Driouich, K. Gueraoui, Y. M. Haddad, M. Sammouda, A. El Hammoumi, M. Kerroum, M. Taibi, O. Fassi Fehri, Numerical and theoretical modelling of unsteady flows for incompressible fluid in rigid conducts. Application to molten polymers flow, (2010) International Review on Modelling and Simulations (IREMOS), 3 (6), pp. 1317-1323.

M. Sammouda, K. Gueraoui, M. Driouich, A. El Hammoumi, A. Iben Brahim, The Variable Porosity Effect on the Natural Convection in a non-Darcy Porous Media, (2011) International Review on Modelling and Simulations (IREMOS), 4 (5), pp. 2701-2707.

M. Driouich, K. Gueraoui, M. Sammouda and Y.M. Haddad, A New Numerical Code to Study the Flow of Molten Polymers In Elastic Pipes. AES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applications, 2011.

M. Driouich, K. Gueraoui, M. Sammouda, Y.M. Haddad and I. Aberdane, The Effect of Electric Field on the Flow of a Compressible Ionized Fluid in a Cylindrical Tube, Adv. Studies Theor. Phys., 6(14) (2012), 687 - 696.

M. Driouich, K. Gueraoui, M. Sammouda and Y.M. Haddad, The Effect of the Rheological Characteristics of the Molten Polymer on its Flow in Rigid Cylindrical Tubes, Adv. Studies Theor. Phys., 6(12) (2012), 569 - 586.

M. Sammouda, K. Gueraoui, M. Driouich, A. El Hammoumi, A. Iben Brahim, Non-Darcy Natural Convection Heat Transfer along a Vertical Cylinder Filled by o Porous Media with Variable Porosity, (2012) International Review of Mechanical Engineering (IREME), 6 (4), pp. 698-704.

Sammouda, M., Gueraoui, K., Driouich, M., Ghouli, A., Dhiri, A., Double Diffusive Natural Convection in Non-Darcy Porous Media with Non-Uniform Porosity, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1021-1030.

R. Chammami, M. Taibi, M. Hami, M. Kerroum, K. Gueraoui and G. Zeggwagh, Influence de la nature de la paroi sur un modèle d'écoulements pulsés de fluides diphasiques. Application à la microcirculation, Influence of the kind of duct on two-fluid pulsatile flows model. Application to the microcirculation, Houille Blanche, (2001).
http://dx.doi.org/10.1051/lhb/2001030

M. Taibi, R. Chammami, M. Kerroum, K. Gueraoui, A. El Hammoumi and G. Zeggwagh, Modélisations des écoulements pulsés à deux phases, en conduites déformables ou rigides, Pulsating flow of two phases in deformable or rigide tubes, ITBM-RBM, (2002).
http://dx.doi.org/10.1016/s1297-9562(02)80012-2

Ilham Aberdane, Kamal Gueraoui, Mohammed Taibi, Abdelhak Ghouli, Abdellah El Hammoumi, Mohammed Cherraj, Mohammed Kerroum, Myrieme Walid, Omar Fassi Fihri, Yehia Mohammed Haddad, Two-Dimensional Theoretical and Numerical Approach of Pollutant Transport in the Lowest Layers of the Atmosphere, (2009) International Review of Mechanical Engineering (IREME), 3 (4), pp. 494-502.

El Khaoudi, F., Gueraoui, K., Driouich, M., Sammouda, M., Numerical and Theoretical Modeling of Natural Convection of Nanofluids in a Vertical Rectangular Cavity, (2014) International Review on Modelling and Simulations (IREMOS), 7 (2), pp. 350-355.
http://dx.doi.org/10.15866/iremos.v7i2.585

Bendada, A., El Hammoumi, A., Gueraoui, K., Sammouda, M., IbenBrahim, A., El Mouraouah, A., On the vulnerability of costal buildings in the Gulf of Cadiz under the tsunami forces. Contemporary Engineering Sciences, Vol. 9, 2016, no. 11, 497 – 511.
http://dx.doi.org/10.12988/ces.2016.59275


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize