Open Access Open Access  Restricted Access Subscription or Fee Access

Efficiency Assessment of the Permutation-Based Frame Synchronization Method


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v13i4.23567

Abstract


The objective of this study is to assess comparatively the efficiency of the permutation-based frame synchronization method for the syncword length of 16 and 8 elements. The proposed method employs a permutation of elements encoded using a fixed-length code. In this method, the maximum value of the minimum Hamming distance between the binary representation of permutation and each of its circular shifts is used. The results show that, for a syncword of length 16, the maximum value of the minimum Hamming distance is 30. A computer simulation model for a frame synchronization system is developed. The indicators for synchronization are determined using the parameters calculated for bit error rate values of 0.4 and 0.495, a correct synchronization probability not less than 0.9997, and a false synchronization probability not greater than 3E-4. The results show that a syncword of length 16 increases the number of bits required in comparison with a syncword of length 8. However, a larger syncword length is required to ensure the cryptographic security, especially, for a three-pass permutation-based protocol.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Factorial Code; Frame Synchronization; Intensive Noise; Permutation; Short Packets; Reliability

Full Text:

PDF


References


P. Kartaschoff, Synchronization in digital communications networks, Proc. IEEE, Volume 79, (Issue 7), July 1991, Pages 1019-1028.
https://doi.org/10.1109/5.84979

R. Scholtz, Frame synchronization techniques, IEEE Trans. Commun., Volume 28, (Issue 8), August 1980, Pages 1204-1213.
https://doi.org/10.1109/TCOM.1980.1094813

F. Mazda, Packet Based Communications Telecommunications Pocket Guide, 1st ed. (Focal Press, 1996).

IEEE standard for ethernet, IEEE STDs 802.3-2018 (Revision of IEEE Std 802.3-2015), July 2018.
https://doi.org/10.1109/IEEESTD.2018.8457469

L.L. Peterson, B.S. Davie, Computer Networks, 6th ed. (Morgan Kaufmann Publishers, Elsevier, 2022).
https://doi.org/10.1016/C2018-0-01477-2

D. Adamy, Practical Communication Theory, 2nd ed. (Institution of Engineering and Technology, 2014).
https://doi.org/10.1049/SBEW516E

K. Saied, A. C. A. Ghouwayel, E. Boutillon, Short frame transmission at very low SNR by associating CCSK modulation with NB-code, IEEE Trans. Wireless Commun., Volume 21, (Issue 9), 2022, Pages 7194-7206.
https://doi.org/10.1109/TWC.2022.3156628

T. P. Sameer Babu, P. M. Ameer, R. David Koilpillai, Synchronization techniques for underwater acoustic communications, Int J Communication, 2023, Pages. e5563.
https://doi.org/10.1002/dac.5563

V. Jain, V. Fokow, J. Wicht, U. Wetzker, A dynamic time warping based method to synchronize spectral and protocol domains for troubleshooting wireless communication, IEEE Access, Volume 11, 2023, Pages 64668-64678.
https://doi.org/10.1109/ACCESS.2023.3289305

Y.-S. Kil, H. Lee, S.-H. Kim, S.-H. Chang, Analysis of blind frame recognition and synchronization based on sync word periodicity, IEEE Access, Volume 8, 2020, Pages 147516-147532.
https://doi.org/10.1109/ACCESS.2020.3014426

C.-H. Cheng, J. Tsui, An Introduction to Electronic Warfare; From the First Jamming to Machine Learning Techniques (S.L. River Publishers, 2021).
https://doi.org/10.1201/9781003337171

B. Bloessl, F. Dressler, mSync: physical layer frame synchronization without preamble symbols, IEEE Trans. Mob. Comput., Volume 17, (Issue 10), January 2018, Pages 2321-2333.
https://doi.org/10.1109/TMC.2018.2808968

Al-Azzeh, J., Ayyoub, B., Faure, E., Shvydkyi, V., Kharin, O., Lavdanskyi, A., Telecommunication Systems with Multiple Access Based on Data Factorial Coding, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (2), pp. 102-113.
https://doi.org/10.15866/irecap.v10i2.17216

N.H. Mahmood, S. Böcker, I. Moerman, O.A. López, A. Munari, K. Mikhaylov, F. Clazzer, H. Bartz, O. Park, E. Mercier, S. Saidi, D.M. Osorio, R. Jäntti, R. Pragada, E. Annanperä, Y. Ma, C. Wietfeld, M. Andraud, G. Liva, Y. Chen, E. Garro, F. Burkhardt, C. Liu, H. Alves, Y. Sadi, M. Kelanti, J. Doré, E. Kim, J. Shin, G. Park, S. Kim, C. Yoon, K. Anwar, P. Seppänen, Machine type communications: key drivers and enablers towards the 6G era, J. Wireless Com. Network., Volume 2021, (Issue 1), December 2021, Pages 134.
https://doi.org/10.1186/s13638-021-02010-5

D. Durisi, G. Liva, Y. Polyanskiy, Short-packet transmission. In: Information Theoretic Perspectives on 5G Systems and Beyond, I. Marić, S. Shamai (Shitz), and O. Simeone, Eds, 1st ed. (Cambridge University Press, 2022).

J. Xie, Z. Chang, X. Guo, T. Hamalainen, Energy efficient resource allocation for wireless powered UAV wireless communication system with short packet, IEEE Trans. on Green Commun., Volume 7, (Issue 1), March 2023, Pages 101-113.
https://doi.org/10.1109/TGCN.2022.3218314

Y. Yang, L. Hanzo, Permutation-based short-packet transmissions improve secure URLLCs in the Internet of things, IEEE Internet Things J., Volume 10, (Issue 12), June 2023, Pages 11024-11037.
https://doi.org/10.1109/JIOT.2023.3243038

B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed. (Wiley, 1996).

M. Rasulova, J. Yunusov, Definition of a three-pass protocol using the Lieb-Liniger model, Appl. Math. Inf. Sci., Volume 15, (Issue 6), 2021, Pages 677-680.
https://doi.org/10.18576/amis/150601

R. Rahim, N. A. Hanin Zahri, M. N. Bin Mohd Warip, Improved Pohlig-Hellman using sieve of eratosthenes for three-pass protocol security enhancement, TEM Journal, Volume 10, (Issue 1), Feb. 2021, Pages 38-44.
https://doi.org/10.18421/TEM101-05

R. Z. Khalaf, H. B. Habib, S. K. Aljaff, Attacking the application of three-pass protocol in Hill-Cipher, Lecture Notes in Networks and Systems, Volume 201, Jun 2021, Pages 121-127.
https://doi.org/10.1007/978-981-16-0666-3_12

M. S. Abbas, A. M. Al-Salih, N. T. Obeis, New approach of adaptive secure transmission through flat fading channel based on three-pass protocol, Journal of Discrete Mathematical Sciences and Cryptography, Volume 24, (Issue 6), 2021, Pages 1601-1605.
https://doi.org/10.1080/09720529.2020.1790737

F. Dupont, A new Shamir's three pass random matrix ciphering mechanism, J Comput Virol Hack Tech, 2023.
https://doi.org/10.1007/s11416-023-00467-0

A. Shcherba, E. Faure, O. Lavdanska, Three-pass cryptographic protocol based on permutations. International 2nd IEEE 2nd (ed.) Conference on Advanced Trends in Information Theory (ATIT). Vol. 2020, pp. 281-284, IEEE Publications, Ukraine, November 2020.
https://doi.org/10.1109/ATIT50783.2020.9349343

E. Faure, A. Shcherba, M. Makhynko, C. Bazilo, I. Voronenko, Concept for using permutation-based three-pass cryptographic protocol in noisy channels, In: Systems, Decision and Control in Energy. (Springer International Publishing, 2023). (In Press).
https://doi.org/10.1007/978-3-031-35088-7_7

J. Al-Azzeh, E. Faure, A. Shcherba and B. Stupka, Permutation-based frame synchronization method for data transmission systems with short packets, Egypt. Inform. J., Volume 23, (Issue 3), September 2022, Pages 529-545.
https://doi.org/10.1016/j.eij.2022.05.005

E. Faure, V. Shvydkyi, A. Shcherba, O. Kharin, B. Stupka, Method of cyclic synchronization based on permutations, Bull. Cherkasy State Technol. Uni., Volume 4, November 2020, Pages 67-76.
https://doi.org/10.24025/2306-4412.4.2020.222439

D.E. Knuth, The Art of Computer Programming: Introduction to Combinatorial Algorithms and Boolean Functions, Vol. 4A. (Addison-Wesley, 2008).

K.-U. Schmidt, Sequences with small correlation, Des. Codes Cryptog., Volume 78, (Issue 1), January 2016, Pages 237-267.
https://doi.org/10.1007/s10623-015-0154-7

E. Faure, A. Shcherba, B. Stupka, Permutation-based frame synchronisation method for short packet communication systems. 11th I.E.E.E. International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Vol. 2021, pp. 1073-1077, IEEE Publications, Cracow, Poland, September 2021.
https://doi.org/10.1109/IDAACS53288.2021.9660996

W.N. Waggener, Pulse Code Modulation Techniques: with Applications in Communications and Data Recording (Van Nostrand Reinhold, 1995).

B.R. Heap, Permutations by interchanges, Comput. J., Volume 6, (Issue 3), November 1963, Pages 293-298.
https://doi.org/10.1093/comjnl/6.3.293

J. Bodner, Learning Go: an Idiomatic Approach to Real-World Go Programming (O'Reilly, 2021).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize