Open Access Open Access  Restricted Access Subscription or Fee Access

Reconfigurable Conformal mm-Wave Antenna Arrays for Smartphones


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v13i2.22994

Abstract


Next-generation antennas are becoming increasingly complex systems to meet the ambitious requirements under the 5G and 6G umbrellas. In this scenario, arrays are essential to achieve high gains and the reconfiguration of beams. However, their integration in modern handsets, having plenty electronic circuits constrained in space, is critical. In this work antenna arrays, working across the mm-Wave reserved bands of Europe and USA, that are bent along two different axes to fit the corners of commercial smartphones are proposed. Moreover, the bending allows achieving beam-steering via a switched beam behavior.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


mm-Wave; Conformal Array; Dual-Bended Array; MIMO; 5G Communication

Full Text:

PDF


References


Sheen, D. M., McMakin, D. L. & Hall, T. E. Detection of explosives by millimeter-wave imaging. in Counterterrorist Detection Techniques of Explosives (ed. Yinon, J. B. T.-C. D. T. of E.) 237-277 (Elsevier Science B.V., 2007).
https://doi.org/10.1016/B978-044452204-7/50028-6

Martiradonna, S., Grassi, A., Piro, G. & Boggia, G. Understanding the 5G-air-simulator: A tutorial on design criteria, technical components, and reference use cases. Comput. Networks 177, 107314 (2020).
https://doi.org/10.1016/j.comnet.2020.107314

Liu, D., Hong, W., Rappaport, T. S., Luxey, C. & Hong, W. What will 5G Antennas and Propagation Be? IEEE Transactions on Antennas and Propagation, vol. 65 6205-6212 (2017).
https://doi.org/10.1109/TAP.2017.2774707

Al-Ogaili, F. & Shubair, R. M. Millimeter-wave mobile communications for 5G: Challenges and opportunities. in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI) 1003-1004 (2016).
https://doi.org/10.1109/APS.2016.7696210

Naqvi, A. H. & Lim, S. Review of Recent Phased Arrays for Millimeter-Wave Wireless Communication. Sensors, vol. 18 (2018).
https://doi.org/10.3390/s18103194

Andrews, J. G., Baccelli, F. & Ganti, R. K. A Tractable Approach to Coverage and Rate in Cellular Networks. IEEE Trans. Commun. 59, 3122-3134 (2011).
https://doi.org/10.1109/TCOMM.2011.100411.100541

Bai, T. & Heath, R. W. Analysis of self-body blocking effects in millimeter wave cellular networks. in 2014 48th Asilomar Conference on Signals, Systems and Computers 1921-1925 (2014).
https://doi.org/10.1109/ACSSC.2014.7094804

I. Marasco, G. Niro, F. Rizzi, M. de Vittorio, A. D'Orazio, and M. Grande, "Design of a PEN-Based flexible PIFA antenna operating in the sub-6GHz Band for 5G applications," in International Conference on Transparent Optical Networks, 2020, vol. 2020-July.
https://doi.org/10.1109/ICTON51198.2020.9203160

I. Marasco et al., "A compact evolved antenna for 5G communications," Sci Rep, vol. 12, no. 1, Dec. 2022.
https://doi.org/10.1038/s41598-022-14447-9

Lovascio, A., Centonze, V., D'Orazio, A., Grande, M., Graphene-Controlled Reconfigurable Patch Antenna Using Shorting Elements, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (5), pp. 286-294.
https://doi.org/10.15866/irecap.v10i5.18080

Qasem, N., Alamayreh, A., Dual-Band Millimeter-Wave Beam Scanning Slotted Square Patch Antenna Based on Active Frequency Selective Surfaces for 5G Applications, (2022) International Journal on Communications Antenna and Propagation (IRECAP), 12 (1), pp. 30-38.
https://doi.org/10.15866/irecap.v12i1.21574

Semkin, V. et al. Beam Switching Conformal Antenna Array for mm-Wave Communications. IEEE Antennas Wirel. Propag. Lett. 15, 28-31 (2016).
https://doi.org/10.1109/LAWP.2015.2426510

Zhang, X., Li, Y., Wang, W. & Shen, W. Ultra-Wideband 8-Port MIMO Antenna Array for 5G Metal-Frame Smartphones. IEEE Access 7, 72273-72282 (2019).
https://doi.org/10.1109/ACCESS.2019.2919622

Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H. & Abd-Alhameed, R. A. Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets. Sensor, vol. 20 (2020).
https://doi.org/10.3390/s20092447

Li, R., Mo, Z., Sun, H., Sun, X. & Du, G. A Low-Profile and High-isolated MIMO Antenna for 5G Mobile Terminal. Micromachine, vol. 11 (2020).
https://doi.org/10.3390/mi11040360

Rodriguez-Cano, R., Zhang, S., Zhao, K. & Pedersen, G. F. Reduction of Main Beam-Blockage in an Integrated 5G Array With a Metal-Frame Antenna. IEEE Trans. Antennas Propag. 67, 3161-3170 (2019).
https://doi.org/10.1109/TAP.2019.2900407

Qualcomm. QTM052 mmWave antenna modules. (2020).

Magray, M. I., Karthikeya, G. S., Muzaffar, K. & Koul, S. K. Compact Co-design of Conformal 4G LTE and mmWave 5G Antennas for Mobile Terminals. IETE J. Res. 84, 1-12 (2019).
https://doi.org/10.1109/APUSNCURSINRSM.2019.8888583

Karthikeya, G. S., Abegaonkar, M. P. & Koul, S. K. CPW Fed Wideband Corner Bent Antenna for 5G Mobile Terminals. IEEE Access 7, 10967-10975 (2019).
https://doi.org/10.1109/ACCESS.2019.2891728

Koul, S. K. & Karthikeya, G. S. Polycarbonate based flexible antennas for mmWave 5G devices. in 2019 IEEE Asia-Pacific Microwave Conference (APMC) 28-30 (2019).
https://doi.org/10.1109/APMC46564.2019.9038884

Karthikeya, G. S., Koul, S. K., Poddar, A. K. & Rohde, U. Ultra-compact orthogonal pattern diversity antenna module for 5G smartphones. Microw. Opt. Technol. Lett. 63, 2003-2012 (2021).
https://doi.org/10.1002/mop.32378

Jilani, S. F., Munoz, M. O., Abbasi, Q. H. & Alomainy, A. Millimeter-Wave Liquid Crystal Polymer Based Conformal Antenna Array for 5G Applications. IEEE Antennas Wirel. Propag. Lett. 18, 84-88 (2019).
https://doi.org/10.1109/LAWP.2018.2881303


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize