

A New Metasurface End-Fire Antenna Array Based on Yagi for 5G Applications
(*) Corresponding author
DOI: https://doi.org/10.15866/irecap.v12i6.22785
Abstract
A novel end-fire wide-scanning metasurface antenna array for a millimeter wave operating at 28 GHz is proposed in this paper. The suggested antenna is considered as a low-cost device since it is printed on both sides of a single-layer FR-4 substrate with a thickness of 0.5 mm and a size of 44×13 mm2. On the top side of the cell phone PCB, eight Yagi antenna elements fed by microstrip lines have been used to form a linear array. The antenna gain and impedance matching are increased by placing a 5×5 metasurface composed of metallic H-shapes right in front of the Yagi array. This technique achieves a large bandwidth of 3.5 GHz from 26.2 to 29.7 GHz, and a high gain of 15.5 dBi, which is almost stable over a wide scanning angle. Finally, in order to understand the integration impact, the proposed antenna phased array has been covered by a casing. The simulation result demonstrates that there is no degradation effect for the entire assembly.
Copyright © 2022 Praise Worthy Prize - All rights reserved.
Keywords
References
Looking Ahead to 5G, white paper, Nokia Solutions and Networks, 2013, pp. 1-16.
Roh, W.; Seol, J.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106-113.
https://doi.org/10.1109/MCOM.2014.6736750
Federal Communications Commission, Report and Order and Further Notice of Proposed Rulemaking (2016). Accessed on: August 14, 2019.
N. Ojaroudiparchin, M. Shen and G. F. Pedersen, Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals, 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 2015,pp.587-590.
https://doi.org/10.1109/TELFOR.2015.7377536
T. S. Rappaport et al., Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, vol. 1, pp. 335-349, May 2013.
https://doi.org/10.1109/ACCESS.2013.2260813
S. Rangan, T. S. Rappaport, and E. Erkip, Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges, Proc. IEEE, vol. 102, no. 3, Mar. 2014, pp. 366-85
https://doi.org/10.1109/JPROC.2014.2299397
N. Ojaroudiparchin, M. Shen, S. Zhang, and G. F. Pedersen, A Switchable 3-D-Coverage-Phased Array Antenna Package for 5G Mobile Terminals, in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1747-1750, 2016.
https://doi.org/10.1109/LAWP.2016.2532607
Abd El-Latif, N., Zamel, H., Attiya, A., Al-Awamery, A., Dual-Band Circularly Polarized Millimeter-Wave Antenna for 5G-WiGig Applications, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (3), pp. 154-160.
https://doi.org/10.15866/irecap.v10i3.18345
C. -N. Chen et al., 38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links, in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021.
https://doi.org/10.1109/TMTT.2020.3035091
Ibrahim, M., 2×2 Circularly Polarized MIMO Antenna at Ka-band for Fifth Generation Applications, (2019) International Journal on Communications Antenna and Propagation (IRECAP), 9 (2), pp. 100-109.
https://doi.org/10.15866/irecap.v9i2.16051
Fei Wang, Zhaoyun Duan, Xin Wang, Qing Zhou, Yubin Gong, High Isolation Millimeter-Wave Wideband MIMO Antenna for 5G Communication, International Journal of Antennas and Propagation, vol. 2019, Article ID 4283010, 12 pages, 2019.
https://doi.org/10.1155/2019/4283010
Y. He, S. Lv, L. Zhao, G. -L. Huang, X. Chen and W. Lin, A Compact Dual-Band and Dual-Polarized Millimeter-Wave Beam Scanning Antenna Array for 5G Mobile Terminals, in IEEE Access, vol. 9, pp. 109042-109052, 2021.
https://doi.org/10.1109/ACCESS.2021.3100933
Kamal, M.M.; Yang, S.; Ren, X.-c.; Altaf, A.; Kiani, S.H.; Anjum, M.R.; Iqbal, A.; Asif, M.; Saeed, S.I. Infinity Shell Shaped MIMO Antenna Array for mm-Wave 5 Applications. Electronics 2021,10, 165.
https://doi.org/10.3390/electronics10020165
Fei Wang, Zhaoyun Duan, Xin Wang, Qing Zhou, Yubin Gong, High Isolation Millimeter-Wave Wideband MIMO Antenna for 5G Communication, International Journal of Antennas and Propagation, vol. 2019, Article ID 4283010, 12 pages, 2019.
https://doi.org/10.1155/2019/4283010
C. -N. Chen et al., 38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links, in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021.
https://doi.org/10.1109/TMTT.2020.3035091
Qasem, N., Alamayreh, A., Dual-Band Millimeter-Wave Beam Scanning Slotted Square Patch Antenna Based on Active Frequency Selective Surfaces for 5G Applications, (2022) International Journal on Communications Antenna and Propagation (IRECAP), 12 (1), pp. 30-38.
https://doi.org/10.15866/irecap.v12i1.21574
N. O. Parchin, R. A. Abd-Alhameed and M. Shen, A Beam-Steerable Antenna Array with Radiation Beam Reconfigurability for 5G Smartphones, 2020 14th European Conference on Antennas and Propagation (EuCAP), 2020, pp. 1-4.
https://doi.org/10.23919/EuCAP48036.2020.9135619
R. -T. Hong, J. Shi, D. -F. Guan, W. -Q. Cao and Z. -P. Qian, A Novel Long Slot Air-Filled Substrate Integrated Waveguide Fixed-Beam Leaky-Wave Antenna, 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020, pp. 1-3.
https://doi.org/10.1109/ICMMT49418.2020.9386342
N. Ojaroudiparchin, M. Shen and G. F. Pedersen, A 28 GHz FR-4 compatible phased array antenna for 5G mobile phone applications, 2015 International Symposium on Antennas and Propagation (ISAP), 2015, pp. 1-4.
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed, Dielectric-Insensitive Phased Array with Improved Characteristics for 5G Mobile Handsets, Progress In Electromagnetics Research M, Vol. 94 (2020), pp. 209-219.
https://doi.org/10.2528/PIERM20042108
Asmaa Elsayed Farahat and Khalid Fawzy Ahmed Hussein, 28/38 GHz Dual-Band Yagi-Uda Antenna with Corrugated Radiator and Enhanced Reflectors for 5G MIMO Antenna Systems, Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
https://doi.org/10.2528/PIERC20022603
N. O. Parchin, R. A. Abd-Alhameed, Y. Li, M. H. Nielsen and M. Shen, High-Performance Yagi-Uda Antenna Array for 28 GHz Mobile Communications, 2019 27th Telecommunications Forum (TELFOR), 2019, pp. 1-4.
https://doi.org/10.1109/TELFOR48224.2019.8971142
Zamir Wani Mahesh Pandurang Abegaonkar Shiban Kishen Koul, A 28-GHz Antenna for 5G MIMO Applications, Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.
https://doi.org/10.2528/PIERL18070303
T. Elkarkraoui, M. Laribi and N. Hakem, Gain Enhancement of Quasi Yagi Antenna Using Lens Technique for 5G Wireless Systems, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018,pp.249-250.
https://doi.org/10.1109/APUSNCURSINRSM.2018.8608368
Anubhav Kumar, Asok De, and Rakesh Kumar Jain, Gain Enhancement Using Modified Circular Loop FSS Loaded with Slot Antenna for Sub-6 GHz 5G Application, Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
https://doi.org/10.2528/PIERL21031108
Abd El-Latif, N., Zamel, H., Attiya, A., Al-Awamery, A., Dual-Band Circularly Polarized Millimeter-Wave Antenna for 5G-WiGig Applications, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (3), pp. 154-160.
https://doi.org/10.15866/irecap.v10i3.18345
Faenzi, M., Minatti, G., González-Ovejero, D. et al. Metasurface Antennas: New Models, Applications and Realizations. Sci Rep 9, 10178 (2019).
https://doi.org/10.1038/s41598-019-46522-z
Bukhari, Syed S., J Vardaxoglou, and William Whittow. 2019. A Metasurfaces Review: Definitions and Applications Applied Sciences 9, no. 13: 2727.
https://doi.org/10.3390/app9132727
H. Zhu, S. W. Cheung and T. I. Yuk, Enhancing Antenna Boresight Gain Using a Small Metasurface Lens: Reduction in half-power beamwidth., in IEEE Antennas and Propagation Magazine, vol. 58, no. 1, pp. 35-44, Feb. 2016.
https://doi.org/10.1109/MAP.2015.2501235
L. Zhang et al., Realization of Low Scattering for a High-Gain Fabry-Perot Antenna Using Coding Metasurface, in IEEE Transactions on Antennas and Propagation, vol. 65, no. 7, pp. 3374-3383, July 2017.
https://doi.org/10.1109/TAP.2017.2700874
D. Samantaray and S. Bhattacharyya, A Gain-Enhanced Slotted Patch Antenna Using Metasurface as Superstrate Configuration, in IEEE Transactions on Antennas and Propagation, vol. 68, no. 9, pp. 6548-6556, Sept. 2020.
https://doi.org/10.1109/TAP.2020.2990280
Balanis, Constantine A. Antenna Theory (2nd Edition). New York: John Wiley & Sons Inc., 1997.
M Delgadillo, MP Panggabean - sjsu.edu2.4 GHz Yagi-Uda Antenna Page 1 Page | 1 EE 172 Extra Credit Project 2.4 GHz Yagi-Uda Antenna
Calikoglu, Baris, Evaluation and Analysis of Array Antennas for Passive Coherent Location (PCL) Systems (2002). Theses and Dissertations. 4445.
https://scholar.afit.edu/etd/4445
R. Elmahraoui, R. Rais and T. Mourabit, A New Endfire Phased Array based on Vivaldi Antenna for 5G Applications, 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2021, pp. 1-2.
https://doi.org/10.1109/ANTEM51107.2021.9519003
N. Ojaroudiparchin, M. Shen and G. F. Pedersen, Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals, 2015 23rd Telecommunications Forum Telfor (TELFOR), 2015, pp. 587-590.
https://doi.org/10.1109/TELFOR.2015.7377536
N. O. Parchin, M. Shen, and G. F. Pedersen, UWB MM-Wave antenna array with quasi omnidirectional beams for 5G handheld devices, 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2016, pp. 1-4.
https://doi.org/10.1109/ICUWB.2016.7790483
A. Lak, Design a Multistub Array Antenna at 28 GHz with Beam Switching Ability, International Journal of Antennas and Propagation, vol. 2022, Article ID 8679798, 10 pages, 2022.
https://doi.org/10.1155/2022/8679798
Lee, H.; Kim, S.; Choi, J. A 28 GHz 5G Phased Array Antenna with Air-Hole Slots for Beam WidthEnhancement. Appl. Sci. 2019, 9, 4204.
https://doi.org/10.3390/app9204204
Kim, S.; Choi, J. Quasi-Yagi Slotted Array Antenna with Fan-Beam Characteristics for 28 GHz 5G Mobile Terminals. Appl. Sci. 2020, 10, 7686.
https://doi.org/10.3390/app10217686
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2023 Praise Worthy Prize