Open Access Open Access  Restricted Access Subscription or Fee Access

Design and Implementation of a 2.4-GHz Fully Integrated Butler Matrix for Smart Antenna System


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v13i1.22234

Abstract


This work proposes and analyzes a low-cost fixed microstrip beamforming system based on a uniform linear array with four rectangular patch antennas controlled by a Butler matrix that operates in the 2.4 GHz ISM band. A 4×4 Butler matrix consisting of four hybrid quadrature directional couplers, two crossovers, and two 45° phase shifters was designed and implemented to control the beam direction of the entire system. Similarly, a comparative study is performed between two different antenna arrays, the first consisting of a conventional linear antenna array and the second antenna array consisting of four patch antennas loaded with metamaterial structures on the ground plane. Finally, the electrical performance of both smart beamforming systems was evaluated, and their potential application as a wireless power transmitter was evaluated. Four beams with distinct orientations were created in each situation. The smart antenna based on a conventional array has a higher gain, while the smart antenna based on metamaterial structures has a higher HPBW.
Copyright © 2023 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.

Keywords


Butler Matrix; Antenna Array; Beamforming; Uniform Linear Array

Full Text:

PDF


References


J. Botero Valencia, L. Castaño Londoño, and D. Marquez Viloria, Trends in the Internet of Things, TecnoLógicas, vol. 22, no. 44, pp. I-II, 2019.
https://doi.org/10.22430/22565337.1241

B. Huertas-Herrera, D. Góez Sánchez, and E. ReyesVera, Spectral Power Map Generation Based on Spectrum Scanning in the ISM Band for Interference Effects, in Communications in Computer and Information Science, 2020, vol. 1154 CCIS, pp. 3-15.
https://doi.org/10.1007/978-3-030-46785-2_1

E. Reyes-Vera, D. E. Senior, J. M. Luna-Rivera, and F. E. López-Giraldo, Advances in electromagnetic applications and communications, TecnoLógicas, vol. 21, no. 43, pp. 9-13, 2018.
https://doi.org/10.22430/22565337.1052

Guerra-Londono, M., Urrea, G., Botero-Valencia, J., Reyes-Vera, E. (2022). Design, Implementation, and Modeling of a LoRa Network Installed in a Freshwater Body. In: Narváez, F.R., Proaño, J., Morillo, P., Vallejo, D., González Montoya, D., Díaz, G.M. (eds) Smart Technologies, Systems and Applications. SmartTech-IC 2021. Communications in Computer and Information Science, vol 1532. Springer, Cham.
https://doi.org/10.1007/978-3-030-99170-8_2

M. Chryssomallis, Smart antennas, IEEE Antennas Propag Mag, vol. 42, no. 3, pp. 129-136, 2000.
https://doi.org/10.1109/74.848965

S. S. Jeng, G. T. Okamoto, G. Xu, H. P. Lin, and W. J. Vogel, Experimental evaluation of smart antenna system performance for wireless communications, IEEE Trans Antennas Propag, vol. 46, no. 6, pp. 749-757, 1998.
https://doi.org/10.1109/8.686758

G. H. Elzwawi, H. H. Elzwawi, M. M. Tahseen, and T. A. Denidni, requency selective surface-based switched-beamforming antenna, IEEE Access, vol. 6, pp. 48042-48050, Jul. 2018.
https://doi.org/10.1109/ACCESS.2018.2850808

H. J. Dong, Y. B. Kim, and H. L. Lee, Reconfigurable Quad-Polarization Switched Beamforming Antenna With Crossed Inverted-V Array and Dual-Butler Matrix, IEEE Trans Antennas Propag, vol. 70, no. 4, pp. 2708-2716, Apr. 2022.
https://doi.org/10.1109/TAP.2021.3137258

S. Kim, S. Yoon, Y. Lee, and H. Shin, A miniaturized butler matrix based switched beamforming antenna system in a two-layer hybrid stackup substrate for 5g applications, Electronics (Switzerland), vol. 8, no. 11, Nov. 2019.
https://doi.org/10.3390/electronics8111232

M. Moubadir, A. McHbal, N. A. Touhami, and M. Aghoutane, A Switched Beamforming Network for 5G Modern Wireless Communications Applications., in Procedia Manufacturing, 2019, vol. 32, pp. 753-761.
https://doi.org/10.1016/j.promfg.2019.02.282

O. Ben Smida, S. Zaidi, S. Affes, and S. Valaee, Robust distributed collaborative beamforming for wireless sensor networks with channel estimation impairments, Sensors (Switzerland), vol. 19, no. 5, 2019.
https://doi.org/10.3390/s19051061

Y. Han, S. Jin, J. Zhang, J. Zhang, and K. K. Wong, DFT-Based Hybrid Beamforming Multiuser Systems: Rate Analysis and Beam Selection, IEEE Journal on Selected Topics in Signal Processing, vol. 12, no. 3, pp. 514-528, 2018.
https://doi.org/10.1109/JSTSP.2018.2821104

E. Bjornson, M. Bengtsson, and B. Ottersten, Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [Lecture Notes], IEEE Signal Process Mag, vol. 31, no. 4, pp. 142-148, 2014.
https://doi.org/10.1109/MSP.2014.2312183

K. Haneda, E. Kahra, S. Wyne, C. Icheln, and P. Vainikainen, Measurement of loop-back interference channels for outdoor-to-indoor full-duplex radio relays, in EuCAP 2010 - The 4th European Conference on Antennas and Propagation, 2010.

L. Rao, M. Pant, L. Malviya, A. Parmar, and S. V. Charhate, 5G beamforming techniques for the coverage of intended directions in modern wireless communication: In-depth review, International Journal of Microwave and Wireless Technologies, vol. 13, no. 10. Cambridge University Press, pp. 1039-1062, Dec. 15, 2021.
https://doi.org/10.1017/S1759078720001622

A. Shastrakar, Design and Simulation of Microstrip Butler Matrix Elements Operat-ing at 2.4GHz for Wireless Applications, Int J Sci Eng Res, vol. 7, no. 5, pp. 1528-1531, 2016.

J. A. Cabrera Botero and C. I. Paez Rueda, Switched pattern antenna for the ISM band (2.45 GHz), Ingenieria y Universidad, vol. 18, no. 1, pp. 1-12, 2014.
https://doi.org/10.11144/Javeriana.IYU18-1.apca

A. T. Devapriya and S. Robinson, Investigation on metamaterial antenna for terahertz applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 18, no. 3, pp. 377-389, 2019.
https://doi.org/10.1590/2179-10742019v18i31577

L. M. Castellanos, F. Lopez, and E. Reyes - Vera, Metamateriales: principales características y aplicaciones, Rev Acad Colomb Cienc Exactas Fis Nat, vol. 40, no. 156, p. 395, 2016.
https://doi.org/10.18257/raccefyn.345

D. Catano-Ochoa, D. E. Senior, F. Lopez, and E. Reyes-Vera, Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators, 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings, pp. 281-282, 2016.
https://doi.org/10.1109/APS.2016.7695849

F. Umaña-Idarraga, D. Cataño-Ochoa, S. Montoya-Villada, C. Valencia-Balvin, and E. Reyes-Vera, Design of a perfect and multi-resonant metamaterial absorber for electromagnetic energy harvesting applications, in Journal of Physics: Conference Series, Nov. 2021, vol. 2118, no. 1.
https://doi.org/10.1088/1742-6596/2118/1/012005

B. A. F. Esmail, S. Koziel, L. Golunski, H. B. A. Majid, and R. K. Barik, Overview of Metamaterials-Integrated Antennas for Beam Manipulation Applications: The Two Decades of Progress, IEEE Access, vol. 10, pp. 67096-67116, 2022.
https://doi.org/10.1109/ACCESS.2022.3185260

D. Shan, H. Wang, K. Cao, and J. Zhang, Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial, Sci Rep, vol. 12, no. 1, p. 331, Jan. 2022.
https://doi.org/10.1038/s41598-021-03570-8

B. A. F. Esmail et al., Deflected beam pattern through reconfigurable metamaterial structure at 3.5 GHz for 5G applications, Waves in Random and Complex Media, pp. 1-24, Mar. 2022.
https://doi.org/10.1080/17455030.2022.2053608

A. Dadgarpour, B. Zarghooni, B. S. Virdee, and T. A. Denidni, Beam Tilting Antenna Using Integrated Metamaterial Loading, IEEE Trans Antennas Propag, vol. 62, no. 5, pp. 2874-2879, May 2014.
https://doi.org/10.1109/TAP.2014.2308516

B. A. F. Esmail, H. B. Majid, S. H. Dahlan, Z. Z. Abidin, M. K. A. Rahim, and M. Jusoh, Planar antenna beam deflection using low‐loss metamaterial for future 5G applications, International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 10, Oct. 2019.
https://doi.org/10.1002/mmce.21867

A. Dadgarpour, A. A. Kishk, and T. A. Denidni, Dual band high‐gain antenna with beam switching capability, IET Microwaves, Antennas & Propagation, vol. 11, no. 15, pp. 2155-2161, Dec. 2017.
https://doi.org/10.1049/iet-map.2017.0294

L. Josefsson and P. Persson, Conformal Array Antenna Theory and Design. John Wiley and Sons, 2006.
https://doi.org/10.1002/047178012X

Ostankov, A., Shchetinin, N., Chernoyarov, O., Pergamenchtchikov, S., Broadband Beam-Forming Circuit Using Microstrip Multilayer Couplers, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (5), pp. 295-301.
https://doi.org/10.15866/irecap.v10i5.19371

Shaji B. K., A., Pradeep, A., Mohanan, P., Fractal Inspired Metamaterial Superstrate for Gain Enhancement, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (4), pp. 271-278.
https://doi.org/10.15866/irecap.v11i4.20861

Thankachan, S., Paul, B., Electrically Small Metamaterial Inspired Monopole Antenna Using Double Negative Metamaterial and Ring Resonators, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (6), pp. 440-448.
https://doi.org/10.15866/irecap.v11i6.21233

Saleh, G., Dual Resonant Wearable Metamaterial for Medical Applications, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (2), pp. 85-93.
https://doi.org/10.15866/irecap.v11i2.19856

Raghavendra, C., Neelaveni Ammal, M., Madhav, B., Metamaterial Based Circularly Polarized Parasitic Element Driven DRA for Sub 6 GHz Wireless and 5G Communication Applications, (2022) International Journal on Communications Antenna and Propagation (IRECAP), 12 (4), pp. 293-301.
https://doi.org/10.15866/irecap.v12i4.21228


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize