Open Access Open Access  Restricted Access Subscription or Fee Access

On GaN Low Noise Amplifier: Device Modelling and Circuit Design


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v13i1.22097

Abstract


The radio frequency spectrum is currently congested due to the advancement in wireless communication systems. For these system, low noise-figure linear amplifier is crucially needed to design the front-end receiver and amplify very low-power received signals without significantly degrading their qualities. Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) has wider linear dynamic range and thus represents an excellent alternative for designing highly linear Low Noise Power Amplifier (LNA). Also, GaN as a wide bandgap material could be very optimistic to work in harsh and noisy environment such as earth space for satellite communications. In this work, global optimization technique-based noise-models are presented and then used to design LNAs. An extensive review of state-of-the-art GaN HEMT based low noise amplifier is given in this paper. Then different topologies of the low noise amplifier are explored. The techniques of bandwidth enhancement are also reviewed. The design of low noise amplifiers using the developed GaN HEMT model is done at X and K bands of frequencies. The performances of the designed LNAs are compared with state-of-the-art reported LNAs in terms of the Noise Figure (NF), gain and bandwidth. The paper presented very interesting results for the cascade, which exhibited the best NF of 1.6-2 dB and a gain of 14.5-16.4 dB within a bandwidth of 9 to 11 GHz. The highest gain of 25-27 dB was achieved by the quadrature cascode LNA with slightly higher NF of 2.1-2.5 at an operating frequency of 8-12 GHz.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


GaN HEMT; Small-Signal Modeling; Noise Modeling; Artificial Bee Colony Optimization (ABCO); Genetic Algorithm Optimization (GAO); Gray Wolf Optimization (GWO); Particle Swarm Optimization (PSO); Low Noise Amplifier

Full Text:

PDF


References


R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, W. L. Pribble, A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs, IEEE Transactions on Microwave Theory and Techniques, Volume 60, (Issue 6), Pages 1764-1783, June 2012.
https://doi.org/10.1109/TMTT.2012.2187535

A. S. Augustine Fletcher, D. Nirmal, A survey of Gallium Nitride HEMT for RF and high power applications, Superlattices and Microstructures, Volume 109, Pages 519-537, September 2017.
https://doi.org/10.1016/j.spmi.2017.05.042

Z. Fanming, J. X. An, G. Zhou, W. Li, H. Wang, T. Duan, L. Jiang, H. Yu, A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability, Electronics, Volume 7, (Issue 12), Page 377, Dec. 2018.
https://doi.org/10.3390/electronics7120377

Arivazhagan L, A. Jarndal, D. Nirmal, GaN HEMT on Si substrate with diamond heat spreader for high power applications, Journal of Computational Electronics, Volume 20, Pages 873-882 February 2021.
https://doi.org/10.1007/s10825-020-01646-8

A. Jarndal, M. A. Alim, A. Raffo, G. Crupi, 2-mm-gate-periphery GaN high electron mobility transistors on SiC and Si substrates: A comparative analysis from a small-signal standpoint. International Journal of RF Microwave Computer Aided Eng. Volume 31, (Issue 6), Page e22642, March 2021.
https://doi.org/10.1002/mmce.22642

A. Jarndal, Arivazhagan L, D. Nirmal, On the performance of GaN-on-Silicon, Silicon-Carbide, and diamond substrates. International Journal of RF and Microwave Computer Aided Engineering. Volume 30, (Issue 6), Page e22196, June 2020.
https://doi.org/10.1002/mmce.22196

A. Jarndal, AlGaN/GaN HEMTs on SiC and Si substrates: A review from the small-signal-modeling's perspective. International Journal of RF and Microwave Computer Aided Engineering, Volume 24, (Issue 3), Pages 389-400, May 2014.
https://doi.org/10.1002/mmce.20772

M. Kamiyama, R. Ishikawa, K. Honjo, 5.65 GHz high-efficiency GaN HEMT power amplifier with harmonics treatment up to fourth order, IEEE Microwave and Wireless Components Letters, Volume. 22, (Issue 6), Pages 315-317, June 2012.
https://doi.org/10.1109/LMWC.2012.2197385

K. W. Kobayashi, V. Kumar, A broadband 70-110-GHz E-/W-band LNA using a 90-nm T-gate GaN HEMT technology, IEEE Microwave and Wireless Components Letters, Volume 31, (Issue 7), Pages 885-888, July 2021.
https://doi.org/10.1109/LMWC.2021.3076360

B. Lu, T. Palacios, High breakdown (>1500V) AlGaN/GaN HEMTs by substrate-transfer technology, IEEE Electron Device Letters, Volume 31, (Issue 9), Pages. 951-953, Sept. 2010.
https://doi.org/10.1109/LED.2010.2052587

Wu S, Ma X, Yang L, Mi M, Zhang M, Wu M, Lu Y, Zhang H, Yi C, Hao Y, A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high- linearity applications, IEEE Electron Device Letters, Volume 40, (Issue 6), Pages 846-849, June 2019.
https://doi.org/10.1109/LED.2019.2909770

Y. Cao, V. Kumar, S. Chen, Y. Cui, S. Yoon, E. Beam, A. Xie, J. Jimenez, A. Ketterson, C. Lee, D. Linkhart, Qorvo's Emerging GaN technologies for mmwave applications, 2020 IEEE/MTT-S International Microwave Symposium (IMS), Pages 570-572, 2020.
https://doi.org/10.1109/IMS30576.2020.9223913

A. Jarndal, A. Kouki, GaN high electron mobility transistors: a review from parasitic elements extraction's perspective, The Journal of Engineering, Volume 2016, (Issue 7), Pages 258-265, July 2016.
https://doi.org/10.1049/joe.2016.0161

M. Alshahed, L. Heuken, M. Alomari, I. Cora, L. Toth, B. Pecz, C. Waechter, T. Bergunde, J. N. Burghartz, Low-dispersion, high-voltage, low-leakage GaN HEMTs on native GaN substrates, IEEE Transactions on Electron Devices, Volume 65, (Issue 7) Pages 2939-2947, July 2018.
https://doi.org/10.1109/TED.2018.2832250

H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, K. M. Lau, 1300 V normally-off p-GaN gate HEMTs on Si with high on-state drain current, IEEE Transactions on Electron Devices, Volume 68, (Issue 2), Pages 653-657, Feb. 2021.
https://doi.org/10.1109/TED.2020.3043213

S. Huang, X. Liu, X. Wang, X. Kang, J. Zhang, J. Fan, J Shi, K. Wei, Y. Zheng, H. Gao, Q. Sun, Ultrathin-barrier AlGaN/GaN heterostructure: a recess-free technology for manufacturing high-performance GaN-on-Si power devices, IEEE Transactions on Electron Devices, Volume 65, (Issue 1), Pages 207-214, Jan. 2018.
https://doi.org/10.1109/TED.2017.2773201

C. J. Yu, C. W Hsu, M.C. Wu, W. C. Hsu, C. Y. Chuang, J. Z. Liu, Improved dc and rf performance of novel mis p-GaN-gated HEMTs by gate-all-around structure, IEEE Electron Device Letters, Volume 41, (Issue 5), Pages 673-676, May 2020.
https://doi.org/10.1109/LED.2020.2980584

L. J. Zhang, J. H. Mo, Y. X. Cui, X. C. Fu, G. Qian, X. J. Li, T. A Zhang, A 750-w AlGaN/GaN HEMT operating at 80 V for L -band applications, IEEE Microwave and Wireless Components Letters, Volume 28, (Issue 5), Pages 440-442, May 2018.
https://doi.org/10.1109/LMWC.2018.2813878

Liu AC, Tu PT, Langpoklakpam C, Huang YW, Chang YT, Tzou AJ, Hsu LH, Lin CH, Kuo HC, Chang EY, The Evolution of manufacturing technology for GaN electronic devices, Micromachines, Volume 12, (Issue 7), Pages 737, Jun. 2021.
https://doi.org/10.3390/mi12070737

A. Malmros, J. T. Chen, H. Hjelmgren, J. Lu, L. Hultman, O. Kordina, E. Ö. Sveinbjörnsson, H. Zirath, N. Rorsman, Enhanced mobility in InAlN/AlN/GaN HEMTs using a GaN interlayer, IEEE Transactions on Electron Devices, Volume 66, (Issue 7), Pages 2910-2915, July 2019.
https://doi.org/10.1109/TED.2019.2914674

M. Rzin, B. Guillet, L. Méchin, P. Gamarra, C. Lacam, F. Medjdoub, J. M. Routoure, Impact of the in situ SiN thickness on low-frequency noise in MOVPE InAlGaN/GaN HEMTs, IEEE Transactions on Electron Devices, Volume 66, (Issue 12), Pages. 5080-5083, Dec. 2019.
https://doi.org/10.1109/TED.2019.2945296

V. Nagarajan, K. M. Chen, B. Y. Chen, G. W. Huang, C. W. Chuang, C. J. Lin, D. Anandan, C. H. Wu, P. C. Han, S. K. Singh, T. T. Luong, Study of charge trapping effects on AlGaN/GaN HEMTs under uv illumination with pulsed I-V measurement, IEEE Transactions on Device and Materials Reliability, Volume 20, (Issue 2), Pages 436-441, June 2020.
https://doi.org/10.1109/TDMR.2020.2987394

T. Ohki, A. Yamada, Y. Minoura, K. Makiyama, J. Kotani, S. Ozaki, M. Sato, N. Okamoto, K. Joshin, N. Nakamura, An over 20-w/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader, IEEE Electron Device Letters, Volume 40, (Issue 2), Pages 287-290, Feb. 2019.
https://doi.org/10.1109/LED.2018.2884918

L. Efthymiou, K. Murukesan, G. Longobardi, F. Udrea, A. Shibib, K. Terrill, Understanding the threshold voltage instability during off-state stress in p-GaN HEMTs, IEEE Electron Device Letters, Volume 40, (Issue 8), Pages. 1253-1256, Aug. 2019.
https://doi.org/10.1109/LED.2019.2925776

C. J. Yu, C. W. Hsu, M. C. Wu, W. C. Hsu, C. Y. Chuang, J. Z. Liu, Improved dc and rf performance of novel mis p-GaN-gated HEMTs by gate-all-around structure, IEEE Electron Device Letters, Volume 41, (Issue 5), Pages. 673-676, May 2020.
https://doi.org/10.1109/LED.2020.2980584

Y. Q. Chen, J. T. Feng, J. L. Wang, X. B. Xu, Z. Y. He, G. Y. Li, D. Y. Lei, Y. Chen, Y. Huang, Degradation behavior and mechanisms of e-mode GaN HEMTs with p-GaN gate under reverse electrostatic discharge stress, IEEE Transactions on Electron Devices, Volume 67, (Issue 2), Pages 566-570, Feb. 2020.
https://doi.org/10.1109/TED.2019.2959299

X. Liu, H. C Chiu, C. H. Liu, H. L. Kao, C. W. Chiu, H. C. Wang, J. Ben, W. He, C. R. Huang, Normally-off p-GaN gated AlGaN/GaN HEMT using plasma oxidation technique in access region, IEEE Journal of the Electron Devices Society, Volume 8, Pages 229-234, February 2020.
https://doi.org/10.1109/JEDS.2020.2975620

S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, GaN-based robust low-noise amplifiers, IEEE Transactions on Electron Devices, Volume 60, (Issue 10), Pages 3238-3248, Oct. 2013.
https://doi.org/10.1109/TED.2013.2265718

A. Jarndal, A. M. Bassal, A broadband hybrid GaN cascode low noise amplifier for WiMax applications, International Journal of RF and Microwave Computer Aided Engineering, Volume 29, (Issue 10), Pages e21456, October 2019.
https://doi.org/10.1002/mmce.21456

D. Floriot, V. Brunel, M. Camiade, C. Chang, B. Lambert, Z. Ouarch-Provost, H. Blanck, J. Grünenpütt, M. Hosch, H. Jung, J. Splettstößer, GH25-10: New qualified power GaN HEMT process from technology to product overview, Proceedings of 9th European Microwave Integrated Circuits Conference, Rome, Italy, Oct. 2014, Pages 225-228.
https://doi.org/10.1109/EuMIC.2014.6997833

G. Crupi, A. Caddemi, A. Raffo, G. Salvo G, A. Nalli, G. Vannini, GaN HEMT noise modeling based on 50-Ω noise factor. Microwave and Optical Technology. Letters, Volume 57, (Issue 4), Pages 937-942, April 2015.
https://doi.org/10.1002/mop.28983

Foundry process data sheet, 0.25µm GaN HEMT, Untied Monolithic Semiconductor Inc.

S. Lee, K. J. Webb, V. Tilak, L. F Eastman, Intrinsic noise equivalent-circuit parameters for AlGaN/GaN HEMTs. IEEE Transactions on Microwave Theory and Techniques. Volume 51, (Issue 5), Pages 1567-1577, May 2003.
https://doi.org/10.1109/TMTT.2003.810140

M. Rudolph, R. Doerner, E. Ngnintendem, W. Heinrich, Noise modeling of GaN HEMT devices, European Microwave Integrated Circuits Conference, Amsterdam, the Netherlands, 2012, Pages 159-162.

A. Nalli, A. Raffo, G. Crupi, S. D'Angelo, D. Resca, F. Scappaviva, G. Salvo, A. Caddemi, G. Vannini, GaN HEMT noise model based on electromagnetic simulations, IEEE Transactions On Microwave Theory and Techniques, Volume 63, (Issue 8), Pages 2498-2508, August 2015.
https://doi.org/10.1109/TMTT.2015.2447542

S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, Polynomial noise modeling of silicon-based GaN HEMTs. International Journal of Numerical Modelling, Volume 27, (Issue 5-6), Pages 812-821, September 2014.
https://doi.org/10.1002/jnm.1907

L. A. Dunleavy, J. I Liu, M. I. Calvo, H. U. Morales, L. A. Levesque, R. Santhakumar, Advanced nonlinear and noise modeling of high-frequency GaN devices, Microwaves & Rf, Volume 120, (Issue 100), Pages 100, November 2017.

A. Jarndal, A. Hussein, G. Crupi, A. Caddemi, Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers. International Journal of Numerical Modelling. Volume 33, (Issue 3), Pages e2585, March 2020.
https://doi.org/10.1002/jnm.2585

A. Jarndal, Measurements uncertainty and modeling reliability of GaN HEMTs, 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013.
https://doi.org/10.1109/ICMSAO.2013.6552632

J. Kennedy, R. Eberhart, Particle swarm optimization, Neural Networks, 1995. Proceedings, IEEE International Conference, Vol 4, pp 1942-1948, Nov 1995.

S. Mirjalili, S. M. Mirjalili, Lewis A, Grey wolf optimizer, Advances in Engineering Software, Volume 69, Pages 46 - 61, 2014.
https://doi.org/10.1016/j.advengsoft.2013.12.007

D. Karaboga, B. Basturk, An artificial bee colony (ABC) algorithm for numeric function optimization, IEEE Swarm Intelligence Symposium 2006, May 12-14, 2006, Indianapolis, Indiana, USA.

M. Mitchell, An Introduction to genetic algorithms (MIT Press, 1998).
https://doi.org/10.7551/mitpress/3927.001.0001

T. H. Lee, The design of CMOS radio-frequency integrated circuits. (Cambridge, U.K.: Cambridge Univ. Press, 2002).
https://doi.org/10.1017/CBO9780511817281

F. Kalantari, N. Masoumi, F. S. Saadati, A low power 90 nm LNA with an optimized spiral inductor model for WiMax front end, 49th IEEE International Midwest Symposium on Circuits and Systems. Volume 1. IEEE, 2006.
https://doi.org/10.1109/MWSCAS.2006.382024

X. Tong, S. Zhang, P. Zheng, Y. Huang, J. Xu, X. Shi, R. A. Wang, A 22-30-GHz GaN low-noise amplifier with 0.4-1.1-dB noise figure, IEEE Microwave and Wireless Components Letters, Volume 29, (Issue 2), Pages 134-136, Feb. 2019.
https://doi.org/10.1109/LMWC.2018.2886074

S. Zhang, J. Xu, P. Zheng, R. Wang, X. Tong, An 18-31-GHz GaN-based LNA with 0.8-dB minimum NF and high robustness, IEEE Microwave and Wireless Components Letters, Volume 30, (Issue 9), Pages 896-899, Sept. 2020.
https://doi.org/10.1109/LMWC.2020.3011135

X. Tong, P. Zheng, L. Zhang, Low-noise amplifiers using 100-nm gate length GaN-on-Silicon process in W-band, IEEE Microwave and Wireless Components Letters, Volume 30, (Issue 10), Pages 957-960, Oct. 2020.
https://doi.org/10.1109/LMWC.2020.3019816

H. L. Kao, B. H. Wei, Y. C Lee, A 3.5 GHz low-noise amplifier in 0. 35 μm GaN HEMT on Si-substrate for WiMAX applications, International Journal of Electronics and Electrical Engineering Volume 3, (Issue 1), Pages 61-65, February, 2015.
https://doi.org/10.12720/ijeee.3.1.61-65

C. Florian, P. A. Traverso, A. Santarelli, A Ka-band MMIC LNA in GaN-on-Si 100-nm technology for high dynamic range radar receivers, IEEE Microwave and Wireless Components Letters, Volume 31, (Issue 2), Pages 161-164, Feb. 2021.
https://doi.org/10.1109/LMWC.2020.3047152

M. Hafeez, A. E. Abounemra, F. M. Ghannouchi, High gain 0.25 μm GaN HEMT based MMIC LNA for GNSS applications, 2019 IEEE MTT-S International Wireless Symposium (IWS), 2019, Pages 1-4.
https://doi.org/10.1109/IEEE-IWS.2019.8803898

L. Pace, W. Ciccognani, S. Colangeli, P. E. Longhi, E. Limiti, R. Leblanc, A Ka-band low-noise amplifier for space applications in a 100 nm GaN on Si technology, 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), 2019, pp 161-164.
https://doi.org/10.1109/PRIME.2019.8787800


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize