Open Access Open Access  Restricted Access Subscription or Fee Access

Performance Evaluation of VBLAST and Linear Receivers for mmWave MIMO Systems with Ray-Tracing Channel Models


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v12i2.22028

Abstract


In this paper, the performance of a millimeter wave (mmWave) Multi-Input Multi-Output (MIMO) system is investigated using low complexity receivers. The receivers include linear Maximum Ratio Combiner (MRC), linear Zero Forcing (ZF) receiver, or linear Minimum Mean-Square Error (MMSE) receiver, in addition to ZF Vertical Bell Laboratories Layered Space-Time (ZF-VBLAST). A MIMO channel model based on a ray-tracing approach and the uniform theory of diffraction has been used. The effect of increasing the number of rays used in the channel model is investigated on the performance of all receivers. For all the scenarios, it has been found out that the ZF-VBLAST structure provides the best symbol-error-rate performance followed by the linear MMSE, then the ZF receiver, and finally the MRC receiver. The trade-off paid for achieving better performance is the increased receiver complexity. The system’s performance is compared under a conventional statistical channel model and a ray-based channel model for a fifth-generation (5G) mobile radio system. It is noted that these models do not accurately characterize the specific environment, hence resulting in an optimistic estimate of the system performance. Finally, the ray-tracing channel model is modified to account for the impact of the presence of trees within the environment. The results show that the performance degradation due to the presence of trees is between 2 to 5 dB for ZF and MMSE receivers, respectively.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


MIMO, mmWave, Linear Receivers, VBLAST, Channel Model, Ray-Tracing

Full Text:

PDF


References


T. S. Rappaport, et al., , "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, vol. 1, pp. 335-349, 2013.
https://doi.org/10.1109/ACCESS.2013.2260813

J. Andrews, et al., What will 5G be?, IEEE Journal on Selected Areas in Commun., vol. 32, no. 6, pp. 1065 - 1082, 2014.
https://doi.org/10.1109/JSAC.2014.2328098

A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, Millimeter-wave massive MIMO: The next wireless revolution? IEEE Commun. Mag., vol. 52, no. 9, pp. 56 - 62, 2014.
https://doi.org/10.1109/MCOM.2014.6894453

S. A. Busari and K. M. Huq and S. Mumtaz and L. Dai and J. Rodriguez, Millimeter-wave massive MIMO communication for future wireless systems: A survey, IEEE Commun. Surveys & Tutorials, vol. 20, no. 2, pp. 836 - 869, 2018.
https://doi.org/10.1109/COMST.2017.2787460

S. Sun, T. Rappaport, R. Heath, A. Nix, and S. Rangan, MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Commun. Magazine, vol. 52, no. 12, pp. 110 - 121, 2014.
https://doi.org/10.1109/MCOM.2014.6979962

J. Huang, C. Wang, R. Feng, J. Sun, W. Zhang, and Y. Yang, Multifrequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems, IEEE Journal on Selected Areas in Commun., vol. 35, no. 7, pp. 1591 -1605, 2017.
https://doi.org/10.1109/JSAC.2017.2699381

B. Wang, L. Dai, Z. Wang, N. Ge, and S. Zhou, Spectrum and energy efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array, IEEE Journal on Selected Areas in Commun., vol. 35, no. 10, pp. 2370 - 2382, 2017.
https://doi.org/10.1109/JSAC.2017.2725878

Q. Zhu, C. X. Wang, B. Hua, K. Mao, S. Jiang and M. Yao, 3GPP TR 38.901 channel model, Wiley 5G Ref: The essential 5G reference online, pp. 1-35, 2021.
https://doi.org/10.1002/9781119471509.w5GRef048

5GPPP, mm-Wave based mobile radio access network for 5G integrated communications, mmMagic, https://5g-mmmagic.eu/, last access on July. 2021.

A. Ghosh, A. The 5G mmWave radio revolution, Microw. Journal, Vol. 59, no.9, pp. 22-36, 2016.

S. Hur et al., Proposal on millimeter-wave channel modeling for 5G cellular system, in IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 454-469, April 2016.
https://doi.org/10.1109/JSTSP.2016.2527364

J. Conrat and P. Pajusco, Typical MIMO propagation channels in urban macrocells at 2 GHz, EURASIP Journal on Wireless Commun. and Networking, vol. 2007, no. 2, pp. 9, 2007.
https://doi.org/10.1155/2007/80194

G. E. Zein, R. Cosquer, J. Guillet, H. Farhat, and F. F. Sagnard, Characterization and modeling of the MIMO propagation channel: an overview, in Proc. 2005 IEEE Conf. on Wireless Technol., pp. 11 - 14.

M. Aslam, C. Yoann, E. Bj ¨ ornson and E. Larsson, Performance of a dense urban massive MIMO network from a simulated ray-based channel, EURASIP Journal on Wireless Commun. and Networking, no. 1, 106, 2019.
https://doi.org/10.1186/s13638-019-1425-1

U. R. Kamboh, U. Ullah, S. Khalid, U. Raza, C. Chakraborty, and F. Al-Turjman. Path loss modelling at 60 GHz mmWave based on cognitive 3D ray tracing algorithm in 5G. Peer-to-Peer Networking and Applications, Vol. 14, no. 5, 3181 - 3197, 2021.
https://doi.org/10.1007/s12083-021-01101-w

M. Lecci, P. Testolina, M. Giordani, M. Polese, T. Ropitault, C. Gentile and M. Zorzi, Accuracy versus complexity for mmWave Ray-Tracing: A full stack perspective. IEEE Trans. on Wireless Commun., Vol. 20, no. 12, pp. 7826 - 7841, 2021.
https://doi.org/10.1109/TWC.2021.3088349

P. Almers, et al., Survey of channel and radio propagation models for wireless MIMO systems, EURASIP Journal on Wireless Commun. and Networking, vol. 2007, no. 1, p. 019 - 070, 2007.
https://doi.org/10.1155/2007/19070

M. A. Jensen and J. W. Wallace, A review of antennas and propagation for MIMO wireless communications, IEEE Trans. Antennas and Propag., vol. 52, no. 11, pp. 2810 - 2824, 2004.
https://doi.org/10.1109/TAP.2004.835272

A. O. Kaya, W. Trappe, L. J. Greenstein, and D. Chizhik, Predicting MIMO performance in urban microcells using ray tracing to characterize the channel, IEEE Trans. on Wireless Commun., vol. 11, no. 7, pp. 2402 - 2411, 2012.
https://doi.org/10.1109/TWC.2012.041612.102335

F. Fuschini, E. M. Vitucci, M. Barbiroli, G. Falciasecca, and V. Degli Esposti, Ray tracing propagation modeling for future smallcell and indoor applications: A review of current techniques, Radio Science, vol. 50, no. 6, pp. 469 - 485, 2015.
https://doi.org/10.1002/2015RS005659

J. H. Lee, J. S. Choi, J. Y. Lee, and S. C. Kim, 28 GHz millimeter-wave channel models in urban microcell environment using three-dimensional ray tracing, IEEE Antennas, and Wireless Propag. Let., vol. 17, no.3, pp. 426-429,2018.
https://doi.org/10.1109/LAWP.2018.2793872

J. H. Lee, J. S. Choi, J. Y. Lee, and S. C. Kim, Cell coverage analysis of 28 GHz millimeter wave in urban microcell environment using 3-D ray tracing, IEEE Trans. on Antennas and Propag., vol. 66, no. 3, pp. 1479-1484, 2018.
https://doi.org/10.1109/TAP.2018.2797531

K. Guan, B. Ai, B. Peng, D. He, X. Lin, L. Wang, Z. Zhong, and T. Kurner. Scenario modules, ray-tracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility, IET Microwaves, Antennas & Propag., vol. 12, no. 4, pp. 501-508, 2017.
https://doi.org/10.1049/iet-map.2017.0591

B. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, and K. Huq, On indoor millimeter wave massive MIMO channels: Measurement and simulation, IEEE Journal on Selected Areas in Commun., vol. 35, no. 7, pp. 1678 - 1690, 2017.
https://doi.org/10.1109/JSAC.2017.2698780

J. Ko, et al., "Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz," IEEE Trans. on Wireless Commun., vol. 16, no. 9, pp. 5853 - 5868, 2017.
https://doi.org/10.1109/TWC.2017.2716924

T. Rappaport, G. M. M. Samimi, and S. Sun, Wideband millimeter wave propagation measurements and channel models for future wireless communication system design, IEEE Trans. on Commun., vol. 63, no. 9, pp. 3029 - 3056, 2015.
https://doi.org/10.1109/TCOMM.2015.2434384

D. Hampicke, C. Schneider, M. Landmann, A. Richter, G. Sommerkorn, and R. Thoma, Measurement-based simulation of mobile radio channels with multiple antennas using a directional parametric data model, in Proc. IEEE Conf. on Veh. Technol. (VTC), vol. 2, pp. 1073 - 1077, 2001.

A. Daho, T. R. Rahman, A.M. Al-Samman and Y. Yamada, Survey study on outdoor wideband system propagation of millimeter wave at 28-Ghz in a 5G network system, International Journal of Eng. & Tech. vol 7. no. 4, pp. 6810 - 6821, 2018.

M. R. Akdeniz et al., Millimeter wave channel modeling and cellular capacity evaluation, in IEEE Journal on Selected Areas in Commun., vol. 32, no. 6, pp. 1164 - 1179, June 2014.
https://doi.org/10.1109/JSAC.2014.2328154

F. Wang and K. Sarabandi, An enhanced millimeter-wave foliage propagation model, IEEE Trans. on Antennas and Propag., vol. 53, no. 7, pp. 2138 - 2145, 2005.
https://doi.org/10.1109/TAP.2005.850704

A. Y. Nashashibi, K. Sarabandi, S. Oveisgharan, M. C. Dobson, W. S. Walker, E. Burke, Millimeter-wave measurements of foliage attenuation and ground reflectivity of tree stands at nadir incidence, IEEE Trans. on Antennas and Propag.,vol. 52, no. 5, pp. 1211 -1222, 2004.
https://doi.org/10.1109/TAP.2004.827250

T. S. Rappaport, S. Deng, 73 GHz wideband millimeter-wave foliage and ground reflection measurements and models, in Proc. IEEE workshop on Commun. (ICCW), pp. 1238-1243, Jun 2015.
https://doi.org/10.1109/ICCW.2015.7247347

K. A. Alnajjar, P. J. Smith and G. K. Woodward, Performance of massive MIMO V-BLAST with channel correlation and imperfect CSI, in Proc. IEEE Conf. on Telecommun. and Networking (ATNAC), pp. 170 - 175, 2014.
https://doi.org/10.1109/ATNAC.2014.7020893

A. Jarndal and K. A. Alnajjar, MM-wave wideband propagation model for wireless communications in built-up environments, Physical Commun., vol. 28, pp. 97 - 107, 2018.
https://doi.org/10.1016/j.phycom.2018.03.011

A. Jarndal, Reliable propagation model for 5G systems in urban environments, in Proc. IEEE Conf. on Advanced Computation and Telecommun. (ICACAT), 2018.
https://doi.org/10.1109/ICACAT.2018.8933590

G. L. Stuber, Principles of Mobile Communication, Springer, 2011.

Alnajjar, K, Receiver Design for Massive MIMO, 2015, (https://ir.canterbury.ac.nz/handle/10092/10517).

N. Kim, L. Yusung and P. Hyuncheol, Performance analysis of MIMO system with linear MMSE receiver, IEEE Transactions on Wireless Commun.7, no. 11, pp. 4474-4478, 2008.
https://doi.org/10.1109/T-WC.2008.070785

G. Golden et al., Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture, IET Electron. Lett., vol. 35, no. 1, pp. 14 - 16, 1999.
https://doi.org/10.1049/el:19990058

A. Jarndal, M. S. Al Salameh, A. Alsaqaf, and Y. Hulba, Wideband modeling of land-mobile-satellite channel in built-up environment, Journal of Electromagnetic Analysis and Applications, vol. 4, no. 3, pp. 101, 2012.
https://doi.org/10.4236/jemaa.2012.43013

M. F. C' atedra and J. Perez, Cell planning for wireless communications, Artech House, Inc.1999.

K. Alnajjar, P. Smith, P.Whiting, and G.Woodward, Size and array shape for massiveMIMO, IEEEWireless Commun. Lett., vol. 4, no. 6, pp. 653 - 656, 2015.
https://doi.org/10.1109/LWC.2015.2477513

Constantine A. Balanis, Advanced Engineering Electromagnetics, Wiley, 2012.

S. Jaeckel, L. Raschkowski, S. Wu, L. Thiele and W. Keusgen, An explicit ground reflection model for mm-Wave channels, in Proc. IEEE Conf. on Wireless Commun. and Networking Conf, 2017.
https://doi.org/10.1109/WCNCW.2017.7919093

Electrical characteristics of the service of the earth recommendation, Series of ITU-R Recommendations, P.527, (08/2019), (https://www.itu.int/rec/R-REC-P.527/en).

K. A. Alnajjar and M. El-Tarhuni, A CV-BLAST spread spectrum massive MIMO NOMA scheme for 5G systems with channel imperfections, Physical Commun., vol.35, 100720. 2019
https://doi.org/10.1016/j.phycom.2019.100720

L. Bai and J. Choi, Low Complexity MIMO Detection. Springer Science & Business Media, 2012.
https://doi.org/10.1007/978-1-4419-8583-5

S. L. Loyka, Channel capacity of MIMO architecture using the exponential correlation matrix, Commun. Lett., Vol. 5, no. 9, 369 -371, 2001.
https://doi.org/10.1109/4234.951380

C. L. Miller, P. J. Smith, P. A. Dmochowski, H. Tataria and M. Matthaiou, Analytical framework for full-dimensional massive MIMO with ray-based channels, in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 5, pp. 1181 - 1195, Sept. 2019.
https://doi.org/10.1109/JSTSP.2019.2937635

3GPP. study on channel model for frequencies from 0.5 to 100 GHz (Release 16) V16.1.0; Technical Report; Rep. TR 38.901; 3GPP, 2020.

M. S. Al Salameh and M. M. Qasaymeh, Effects of buildings and trees on satellite mobile communications. International Journal of Electronics," vol. 91, no. 10, pp. 611 - 632, 2004.
https://doi.org/10.1080/00207210412331327868

K. A. Alnajjar and S. Abdallah, Performance of low complexity receivers for massive MIMO with channel estimation and correlation, In Proc. IEEE Symposium on Telecommun. Technol. (ISTT), pp. 1 - 5, 2016.
https://doi.org/10.1109/ISTT.2016.7918074

A. M. Elbir, CNN-based precoder and combiner design in mmWave MIMO systems, IEEE Commun. Lett. 23, no. 7, pp. 1240 - 1243, 2019.
https://doi.org/10.1109/LCOMM.2019.2915977

J. Li, X. Limin Xiao and Z. Shidong, Robust and low complexity hybrid beamforming for uplink multiuser mmWave MIMO systems, IEEE Commun. Lett. 20, no. 6, pp. 1140 - 1143, 2016.
https://doi.org/10.1109/LCOMM.2016.2542161


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize